Density functional study of the L10–αIrV transition in IrV and RhV

Michael J. Mehla,*, Gus L.W. Hartb, Stefano Curtaroloc

a Center for Computational Materials Science, Naval Research Laboratory, Code 6390, Washington, DC 20375-5000, USA
b Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602, USA
c Department of Mechanical Engineering and Materials Science and Department of Physics, Duke University, Durham, NC 27708, USA

\textbf{A R T I C L E I N F O}

\textbf{Article history:}
Received 1 June 2010
Received in revised form 11 August 2010
Accepted 23 August 2010
Available online 16 October 2010

\textbf{Keywords:}
Structural phase transitions
Jahn–Teller
Electronic structure
Density functional theory
Ordered intermetallic alloys

\textbf{A B S T R A C T}

Both IrV and RhV crystallize in the αIrV structure, with a transition to the higher symmetry L1\textsubscript{0} structure at high temperature, or with the addition of excess Ir or Rh. Here we present evidence that this transition is driven by the lowering of the electronic density of states at the Fermi level of the αIrV structure. The transition has long been thought to be second order, with a simple doubling of the L1\textsubscript{0} unit cell due to an unstable phonon at the R point (0 1/2 1/2). We use first-principles calculations to show that all phonons at the R point are, in fact, stable, but do find a region of reciprocal space where the L1\textsubscript{0} structure has unstable (imaginary frequency) phonons. We use the frozen phonon method to examine two of these modes, relaxing the structures associated with the unstable phonon modes to obtain new structures which are lower in energy than L1\textsubscript{0} but still above αIrV. We examine the phonon spectra of these structures as well, looking for instabilities, and find further instabilities, and more relaxed structures, all of which have energies above the αIrV phase. In addition, we find that all of the relaxed structures, stable and unstable, have a density comparable to the L1\textsubscript{0} phase (and less than the αIrV phase), so that any transition from one of these structures to the ground state will have a volume change as well as an energy discontinuity. We conclude that the transition from L1\textsubscript{0} to αIrV is probably weakly first order. We also examine the behavior of similar compounds, and show that the αIrV structures of both IrTi and RhTi are lower in energy than the experimentally observed high-temperature L1\textsubscript{0} structure.

Published by Elsevier B.V.

1. Introduction

A major goal of computational condensed matter physics is the determination of structural properties for compounds. Once the structure has been determined, other properties, e.g., strength, ductility, electronic properties (including superconductivity), magnetism, etc., can be determined. Several methods exist to attack this problem. One possibility is to exhaustively search an experimental database of known structures [1–3], determining the low energy structures for each composition of the target materials. Other methods use first-principles calculations on a small set of target structures to determine parameters which can be used to predict properties of more complex systems. These include the cluster expansion method [4–8], tight-binding parametrization methods [9,10], and atomistic potential methods [11]. Methods of the first type can be combined with methods of the second type for more thorough searches [12–14]. Using a more phenomenological approach, Pettifor [15] reordered the periodic table and showed that this grouped together binary compounds with similar structures, allowing some predictive capability.

These programs, can, however, only be implemented with a thorough knowledge of the behavior of compounds. Exhaustive searches of a database require an extensive database to search, including all structures which are known, or thought likely, to form for a target system. Parameterized methods may not be able to reach all regions of phase space, and also need a database of structures for testing [16,17]. Phenomenological methods may indicate trends, but may only relate compounds with similar high-temperature structures. For all methods, then, it is useful to look at less-common structures found in nature.

The αIrV structure, shown in Fig. 1, has so far only been observed in the prototype compound [18,19] and its neighbor in the periodic table, RhV [20,21]. This orthorhombic structure, space group Cmmm (\#65), can be viewed as a doubled unit cell distortion of the CsCl structure [22] or the tetragonal L1\textsubscript{0} structure, space group P4/mmm (\#123) [23]. Indeed, both the IrV and RhV phase diagrams [24] show the L1\textsubscript{0} structure as the ground state for vanadium-poor (x = 40–48\%) [Ir,Rh]\textsubscript{1−x}V\textsubscript{x}, and vanadium-rich αIrV is known to transform to L1\textsubscript{0} at temperatures above 506 °C [23].

The seemingly straightforward transition pathway from L1\textsubscript{0} to αIrV was analyzed by Chen and Franzen [23] in the context of Landau theory: first, double the tetragonal L1\textsubscript{0} unit cell along the y and z directions, corresponding to a phonon at the R (0 1/2 1/2) point in reciprocal space. Second, construct the primitive base-centered...
In Section 4 we use the frozen-phonon method on the unstable phonon modes to search for new structures which have lower energy than L10. Such a search is computationally bound, so we looked at all unit cells with eight atoms or less, and two structures with 32 atom unit cells. In this range we find no instability which relaxes to the αIrV phase, however it is not impossible that searching through larger unit cells would find such an instability, in which case the transition would indeed be second order. We do find several new structures, some of which have apparently never been seen in nature, and one which was previously known [21].

In Section 5 we discuss our results and thoughts on the order of the L10–αIrV transition.

2. Energetics and electronic structure of the L10 and αIrV phases

All computations were made using the Kohn–Sham [30] formulation of density functional theory [31] with the Perdew–Burke–Ernzerhof [32] generalized gradient approximation. Depending on our needs, we used the Vienna ab initio Simulation Package (VASP) [33–35] with projector augmented-wave (PAW) potentials [36], or the Quantum Espresso (QE) package [37] with the supplied ultra-soft pseudopotentials for Ir, Rh, and V. We used rather large plane wave cutoffs of 350 eV in VASP and 540 eV in QE to ensure convergence. We used Γ-centered k-point meshes with 729 and 369 points in the irreducible Brillouin zones of the L10 and αIrV structures, respectively. We summed over electronic states using a Fermi–Dirac distribution [38] with a temperature of 65 meV (0.005 Ry). Comparison with calculations for denser k-point meshes show that these values give energies converged to better than 0.5 meV/formula unit.

We show our results for IrV and RhV in Table 1 and Fig. 2. In both cases we see that the VASP PAW potentials and the QE ultra-soft pseudopotentials are in excellent agreement with one another, and in good agreement with experiment, within the usual errors of density functional theory in the generalized gradient approximation. In both compounds the αIrV state is below the L10 state by approximately 55 meV/formula unit, in agreement with experiment.

From experiment [23] we know that L10 is the preferred high temperature structure for αIrV. Using the COMSUBS routine from the ISOTROPY [39,40] package, we find that an orthorhombic distortion of the L10 structure reduces the symmetry from space group P4/mmm to Cmcm, the space group of the αIrV structure. It is plausible to argue [23] that this lowering of symmetry is the pathway for the L10 → αIrV phase transition. The symmetry-breaking character of the transition is evident from Fig. 3, where we plot the electronic density of states of both phases near the Fermi level. As we are only interested in the overall behavior of the density of states, we compute these curves by smearing out each eigenvalue found by VASP using a Fermi distribution at a temperature of 5 mRy. We see that at the Fermi level the density of states is twice as large in the L10 phase as it is in the αIrV phase. This is consistent with a Jahn–Teller-like symmetry breaking and phase transition [29]. As an aside, we also note that there is a minimum in the L10 density of states just above the Fermi level. This is consistent with the phase diagram of IrV [24], which shows that iridium-rich IrV has the L10 structure. Assuming the additional Ir replaces V in the L10 structure, and using a rigid-band model, we can see how adding Ir to the system would raise the Fermi level and lower the density of states, leading to a more stable L10 phase. We find a similar, though less pronounced, state of affairs in RhV, as is also seen in Fig. 3.

We have investigated the possibility that the αIrV structure might be found in compounds neighboring IrV and RhV in the periodic table. The result of this investigation are shown in Table 2.
Table 1

Equilibrium lattice constants (in Å), atomic positions, and equilibrium bulk modulus (K_0, in GPa) for the L1$_0$ and αIrV structures of IrV and RhV determined from experiment [18,20], VASP PAW calculations, and QE ultrasoft pseudopotential calculations. Note that we give the primitive tetragonal lattice parameters for the L1$_0$ structure, rather than the more-common face-centered tetragonal setting, so that when $c/a = 1$ the L1$_0$ structure reduces to the cubic CsCl structure. The final row of the table shows the energy difference between the two phases (meV/formula unit).

<table>
<thead>
<tr>
<th></th>
<th>IrV Exp.</th>
<th>VASP L1$_0$</th>
<th>QE L1$_0$</th>
<th>RhV Exp.</th>
<th>VASP L1$_0$</th>
<th>QE L1$_0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1$_0$ structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>2.749</td>
<td>2.755</td>
<td>2.762</td>
<td>2.754</td>
<td>2.739</td>
<td>2.745</td>
</tr>
<tr>
<td>K_0</td>
<td>272</td>
<td>277</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>αIrV structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>5.791</td>
<td>5.838</td>
<td>5.816</td>
<td>5.78</td>
<td>5.849</td>
<td>5.813</td>
</tr>
<tr>
<td>c</td>
<td>2.796</td>
<td>2.814</td>
<td>2.823</td>
<td>2.78</td>
<td>2.792</td>
<td>2.802</td>
</tr>
<tr>
<td>K_0</td>
<td>271</td>
<td>276</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ir/Rh (4j)</td>
<td>0.22</td>
<td>0.216</td>
<td>0.216</td>
<td>0.214</td>
<td>0.215</td>
<td></td>
</tr>
<tr>
<td>V (4g)</td>
<td>0.28</td>
<td>0.296</td>
<td>0.297</td>
<td>0.296</td>
<td>0.297</td>
<td></td>
</tr>
<tr>
<td>ΔE</td>
<td>53.6</td>
<td>67.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Energy/volume curves for IrV and RhV in the L1$_0$ and αIrV structures, determined from VASP and QE calculations as discussed in the text. For ease of comparison we have set the minimum energy of the L1$_0$ phase to zero.

which shows the energy difference between the L1$_0$ and αIrV structure for several compounds. Most of these, (Ir,Rh)–(Nb,Ta,V) and CoV, have 14 electrons in the valence band. One, CoPt, has a ground state L1$_0$ structure. The other two, (Ir,V)Ti, were suggested by the original referee due to the fact that Pettifor’s AB structure map [15] groups them together with the first class of compounds, and at temperatures above about 500 °C both compounds exhibit the L1$_0$ structure. In all cases, except for CoPt, we found that the αIrV structure was locally stable—that is, when we started from the structural parameters found for IrV in the αIrV structure, performed chemical alchemy to transform the atoms to the chosen compound, and relaxed the structure using VASP, we found a minimum energy structure distinct from the higher symmetry L1$_0$ structure. This suggests that the formation of the αIrV structure may be associated with features of the electronic density of states or Fermi surface arising from having 14 valence electrons per formula unit in the unit cell. We did not check the elastic and vibrational stability of the resulting structure. However the L1$_0$ structure was lower in energy for all compounds except IrV and RhV. Also, as shown in **Fig. 4**, for these compounds the density of states of the L1$_0$ structure is very

![Elastic energy/volume curves for IrV and RhV](image1)

Fig. 3. Electronic density of states for the L1$_0$ (red) and αIrV (blue) phases of IrV (left) and RhV (right), found by smearing the eigenvalues computed by VASP using a Fermi–Dirac distribution at $T = 65$ meV (5 mRy) [38]. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
The previous section showed that the αIrV structure is the ground state (or, at least, a low-energy metastable state) of IrV, while the L1₀ structure is unstable to phonons along and near the line \((x \frac{1}{4} \frac{1}{2} \frac{1}{2})\) in the Brillouin zone, but not at the R point, where the phonon modes are real, invalidating the second-order phase transition.

In the following, in interest of saving space, we only show the results for IrV. Our calculations for RhV show a similar pattern.

This approach can lead to aliasing at points off of the q-point mesh. To check that this does not occur we also performed frozen-phonon calculations [25], wherein we construct a supercell commensurate with the given q-point and measure the change in energy as a function of atomic displacement within the supercell. To do this we used the program FROZSL, part of the ISOTROPY package [39,40], with atomic displacements of 0.1 Bohr. Electronic structure calculations were then performed with the same energy cutoff as the original unit cell, and when possible the same k-point mesh, albeit folded back into the smaller Brillouin zone associated with the supercell.

In the following, in interest of saving space, we only show the results for IrV. Our calculations for RhV show a similar pattern.

Fig. 5 shows the phonon frequencies of the equilibrium structure of αIrV. High symmetry points and lines are labeled according to the convention of Miller and Love [42], and can be generated automatically [45]. All the phonons have real frequencies, confirming that αIrV is at least a metastable structure for IrV, as suspected. There is no evidence of any aliasing in these calculations.

Fig. 6 shows the phonon frequencies of the \(L_1^0\) phase of IrV, along symmetry lines labeled according to the convention of Miller and Love [42]. We show results of frozen phonon calculations, showing good agreement between the two techniques, even off the linear response q-mesh. As expected, there are regions of reciprocal space with imaginary phonon frequencies. Surprisingly, this region is not near the R point \((0 \ 1 \ 2 \ 1/2)\) as described by Chen and Franzen [23], but along and near a line from the midpoint of the U line to the midpoint of the S line, as shown in more detail in the second panel of the figure. We will discuss the implications of this instability in the next section.

4. Searching for low energy structures

The previous section showed that the αIrV structure is the ground state (or, at least, a low-energy metastable state) of IrV, while the \(L_1^0\) structure is unstable to phonons along and near the line \((x \frac{1}{4} \frac{1}{2} \frac{1}{2})\) in the Brillouin zone, but not at the R point, where the phonon modes are real, invalidating the second-order phase transition.
transition scenario of Chen and Franzen [23]. In this section we will look to see if it is possible to find another continuous transition path from L10 to αIrV.

In the frozen phonon method, we displace atoms from their equilibrium sites in a supercell consistent with the phonon wave vector and in directions which maintain the symmetry of the phonon mode. The frequency of the mode is then directly related to the square root of the curvature of the energy as a function of atom displacement. A mode with an imaginary frequency will then as a matter of course be related to a supercell calculation which has a negative curvature, leading to supercells with energy lower than the original state. These structures can then be relaxed, leading to new, or at least different, structures.

As an example of this, consider the unstable L10 phonon at the point (1/4 1/4 1/2) on the high symmetry “S” line. The linear response calculations find an imaginary frequency of 81 cm\(^{-1}\). We investigated the possible lower energy structures associated with this mode by using the FROZSL code from the ISOTROPY package [39,40] to generate the supercells and atomic displacements corresponding to each mode at the point. This package tells us that this point has phonons in three irreducible representations, each with two associated modes. For each representation we run three total energy calculations for displacements of the atoms in different directions, with the maximum displacement of 0.1 Bohr. The energy differences between these structures and the ground state are used to determine the dynamical matrix at this point, and the mode frequencies.

For the equilibrium L10 parameters found in Table 1, the S3 irreducible representation (in the notation of Miller and Love [42]) has one mode with an imaginary frequency of 74 cm\(^{-1}\). (The discrepancy between linear response and frozen phonon calculations is due to the use of different k-point meshes and the anharmonicity of the mode. For our purposes we are only interested in showing that the mode is unstable in both cases, and so will not try to refine the calculations to improve the agreement between the two.)

Diagonalizing the dynamical matrix allows us to find a supercell with displaced atoms which has an energy lower than the L10 phase. This supercell has space group Cmmm (#65), and with the appropriate choice of origin has Ir atoms at the (4e) and (4h) Wyckoff positions, and V atoms at the (2a), (2b), and (4j) positions. This is crystallographically equivalent to the intermetallic Ga3Pt5 structure [46], and we will refer to it as such. Upon relaxation we find a minimum energy structure which has approximately the same density as, and an energy 20.5 meV/formula unit below, the relaxed L10 structure of Table 1. Note that this is still well above the energy of the αIrV structure.

In a similar fashion, if we look at the phonons at (0 1/4 1/2), on the “U” line, we find an imaginary U3 mode with a frequency of 70 cm\(^{-1}\). This mode leads to another supercell with space group Cmmm, but now the Ir atoms are on the (4e) and (4g) Wyckoff sites, while the V atoms occupy a pair of (4j) Wyckoff sites. The relaxed structure again has a density comparable to L10, but its energy is only 11.0 meV/formula unit below the L10 structure minimum. In the discussion below will refer to this structure as Cmmm.

Neither the Ga3Pt5 nor the Cmmm structure will relax to the ground state αIrV structure. However, both structures have imaginary frequency long-wavelength optical mode phonons. If we venture away from the Γ point we will have to deal with frozen-
Table 3
Structural, energy, and vibrational stability results for the structures of IrV discussed in this paper. All calculations use the QE pseudopotentials discussed in the text. "Source" indicates the origin of the unit cell, either from experiment or an unstable phonon in the indicated structure. "Atoms" is the number of atoms in the primitive cell. Lattice constants are given in the standard crystallographic convention, e.g. the lattice constants of the full orthorhombic cell are given for the Cmmm and Cmcm space groups. All primitive cells have $\alpha = \gamma = 90^\circ$. The rows “Ir” and “V” give the Wyckoff positions of the atoms. “Volume” is the minimum energy volume of the structure per formula unit, in (Å³). “Energy” is the energy of the structure below the L1₀ structure, in meV/formula unit.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Source</th>
<th>Space group</th>
<th>Atoms</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>β</th>
<th>Ir</th>
<th>V</th>
<th>Volume</th>
<th>Energy</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>L₁₀</td>
<td>Exp.</td>
<td>$P4/mmm$</td>
<td>2</td>
<td>2.762</td>
<td>2.762</td>
<td>3.668</td>
<td>90</td>
<td>(1a)(0 0 0)</td>
<td>(1d)(1 2 1 2 0)</td>
<td>27.97</td>
<td>0</td>
<td>Unstable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>11.110</td>
<td>2.774</td>
<td>90</td>
<td>(4e)(1 4 1 4 0)</td>
<td>(4j)(0.364 1/2 4j)(0.115 1/2)</td>
<td>27.97</td>
<td>0.1098</td>
<td>Unstable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4g)(0.267 0 0)</td>
<td>(4j)(0.268 0.002 1/4)</td>
<td>27.97</td>
<td>20.51</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

Fig. 7. Linear-response phonon spectra of two eight-atom unit cells derived from unstable phonon modes of L₁₀ IrV. Left: The metastable Rh₅V₃ structure. Right: The Amm₂ structure with Ir atoms at two (4d) Wyckoff positions and V atoms at four (2b) Wyckoff positions. The imaginary frequencies of the unstable modes are shown as negative frequencies and highlighted in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

Table 4
Continuation of Table 3.

<table>
<thead>
<tr>
<th>Structure</th>
<th>Source</th>
<th>Space group</th>
<th>Atoms</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>β</th>
<th>Ir</th>
<th>V</th>
<th>Volume</th>
<th>Energy</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ga₃Pt₅</td>
<td></td>
<td>$Cmmm$</td>
<td>8</td>
<td>7.222</td>
<td>7.800</td>
<td>3.974</td>
<td>90</td>
<td>(4e)(1 4 1 4 0)</td>
<td>(4j)(0.218 1/2 2)</td>
<td>27.98</td>
<td>20.25</td>
<td>Unstable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4h)(0.273 0 1/2)</td>
<td>(4j)(0.270 0.998)</td>
<td>27.98</td>
<td>24.15</td>
<td>Unstable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4c)(0.256 0.252)</td>
<td>(4j)(0.256 0.998)</td>
<td>27.98</td>
<td>25.12</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure</th>
<th>Source</th>
<th>Space group</th>
<th>Atoms</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>β</th>
<th>Ir</th>
<th>V</th>
<th>Volume</th>
<th>Energy</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$Cmmm$</td>
<td>8</td>
<td>7.222</td>
<td>7.800</td>
<td>3.974</td>
<td>90</td>
<td>(4e)(1 4 1 4 0)</td>
<td>(4j)(0.218 1/2 2)</td>
<td>27.98</td>
<td>20.25</td>
<td>Unstable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4h)(0.273 0 1/2)</td>
<td>(4j)(0.270 0.998)</td>
<td>27.98</td>
<td>24.15</td>
<td>Unstable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4c)(0.256 0.252)</td>
<td>(4j)(0.256 0.998)</td>
<td>27.98</td>
<td>25.12</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure</th>
<th>Source</th>
<th>Space group</th>
<th>Atoms</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>β</th>
<th>Ir</th>
<th>V</th>
<th>Volume</th>
<th>Energy</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$Cmmm$</td>
<td>8</td>
<td>7.222</td>
<td>7.800</td>
<td>3.974</td>
<td>90</td>
<td>(4e)(1 4 1 4 0)</td>
<td>(4j)(0.218 1/2 2)</td>
<td>27.98</td>
<td>20.25</td>
<td>Unstable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4h)(0.273 0 1/2)</td>
<td>(4j)(0.270 0.998)</td>
<td>27.98</td>
<td>24.15</td>
<td>Unstable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4c)(0.256 0.252)</td>
<td>(4j)(0.256 0.998)</td>
<td>27.98</td>
<td>25.12</td>
<td>Unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structure</th>
<th>Source</th>
<th>Space group</th>
<th>Atoms</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>β</th>
<th>Ir</th>
<th>V</th>
<th>Volume</th>
<th>Energy</th>
<th>Stability</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>$Cmmm$</td>
<td>8</td>
<td>7.222</td>
<td>7.800</td>
<td>3.974</td>
<td>90</td>
<td>(4e)(1 4 1 4 0)</td>
<td>(4j)(0.218 1/2 2)</td>
<td>27.98</td>
<td>20.25</td>
<td>Unstable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4h)(0.273 0 1/2)</td>
<td>(4j)(0.270 0.998)</td>
<td>27.98</td>
<td>24.15</td>
<td>Unstable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(4c)(0.256 0.252)</td>
<td>(4j)(0.256 0.998)</td>
<td>27.98</td>
<td>25.12</td>
<td>Unknown</td>
</tr>
</tbody>
</table>
phonon calculations on unit cells having hundreds of atoms, so we will only examine the unstable modes at \(\Gamma \) in both structures.

First consider the imaginary frequency \(\Gamma^{-} \) mode of the Ga3Pt5 structure. It is associated with a supercell of space group Amm2 (#38), with Ir atoms at the (4d) and (4e) Wyckoff sites and V atoms on pairs of (2a) and (2b) sites. This structure is crystallographically equivalent to the RhV3 structure [21,47] and will be referred to by that name. The relaxed structure is 41.1 meV/formula unit below the L10 structure, with similar density. This structure is metastable, as seen in the linear-response phonon spectrum plotted on the left-hand side of Fig. 7.

The second structure, derived from the unstable \(\Gamma_{2}^{-} \) mode of Cmmm, again with space group Amm2 (#38), puts the Ir atoms on two (4d) sites and the V atoms on four distinct (2b) sites. The relaxed structure has an energy 24.1 meV/formula unit below the L10 structure, again with a similar density. This structure has not been found in the intermetallic literature. It is vibrationally unstable, as can be seen from the phonon spectrum on the right-hand side of Fig. 7.

The four structures Ga3Pt5, RhV3, Cmmm and Amm2 are the only structures with eight or fewer atoms in the primitive cell which can be generated by relaxing the unstable phonon modes of the L10 structure. If we wish to examine larger unit cells, we can continue along this line of research ad infinitum, or until we find a supercell where the atoms relax to the ground state of \(\alpha \)IrV structure, a supercell with energy below the ground state structure, or we run out of computational resources. In most cases, including this one, we will reach the latter limit first. We did compute the relaxed energies of two supercells associated with unstable phonon modes in the Amm2 structure, and one with an unstable mode of the Cmmm structure. These structures had thirty-two atoms in the supercell, and energies below the parent structure but above the metastable RhV3 structure.

Tables 3–5 summarize all of the calculations discussed here, including the structural derivation, space group, lattice constants, atomic positions, energy, and stability.

5. Discussion

We have shown by direct calculation that the transition from the L10 to the \(\alpha \)IrV structure of both IrV and RhV is a result of a Jahn–Teller driven distortion of the high-symmetry unit cell. This distortion does not result from a zone-doubling unstable phonon at the R point of the L10 Brillouin zone, and so the simple Landau theory picture does not hold. This does not completely eliminate the possibility that the transition is second order, for we found an entire region of reciprocal space, in and around the line (\(x/4 \mid 1/4 \mid 1/2 \)), where the L10 structure has vibrational instabilities. We examined several of those instabilities, and found that they lead to numerous new structures, most of which have yet to be seen in ordered intermetallic systems and most of which are vibrationally unstable. The only phase which we found that is metastable is the experimentally observed RhV3 phase, albeit in a 50–50 composition.

However, none of the unstable structures shows any sign of relaxing into the ground state structure. In fact, looking at Tables 2–4, we see that all of the structures except \(\alpha \)IrV have approximately the same volume, 27.97 Å³/formula unit in IrV. The ground state \(\alpha \)IrV structure, one the other hand, has a somewhat smaller volume, 27.78 Å³/formula unit. While this may seem insignificant, the volume change from one phase to another is a signal of a first-order transition, although only weakly first order here.

This paper also shows a mechanism for generating new candidate intermetallic phases: look for vibrationally unstable modes in a high energy structure, construct a supercell which will mimic that mode within the frozen-phonon calculation, and relax the cell. Using this method we found five new structures, as well as one, RhV3, which had been seen before but which we had not been aware of until this research started. Many more new structures can undoubtedly be derived from just this system, but further research in this area is currently restricted by the time needed to search the Brillouin zone of a given crystal. For the eight atom supercells computing the phonon spectrum at 45 q-points with a reason-
able number (≥64) of processors took days to weeks to complete, depending on the symmetry of the crystal. Calculating the phonons for larger unit cells will of course take longer, although we will have fewer q-points to consider, alleviating some of the O[N^3] increase due to the larger unit cell. One of our research goals will be to construct a “set-and-forget” mechanism which will search the Brillouin zone of an initial structure (here L1_0) and find all unstable modes with supercells containing a given number of atoms, relax those modes, and repeat, until all such structures have been found. Even restricting ourselves to all possible binary intermetallics [1] this will require a Grand Challenge computational program.

Finally, we found that IrTi and RhTi have a lower energy in the αIrV structure than in the L1_0 structure. This shows that Pettifor mapping, while useful in showing related compounds, can only be a guideline to determining new structures, and must be augmented by other techniques in order to find the true ground state behavior of compounds. We will discuss these interesting compounds in a later paper.

Acknowledgments

We thank the anonymous referee for suggesting that we look at the behavior of RhTi, and for the Pettifor reference [15], which led us to look at IrTi as well. We also thank Ohad Levy, Michal Jahnátek and Wahyu Setyawan for fruitful discussions.

M.J. Mehlig is supported by the United States Office of Naval Research (ONR). S. Curtarolo acknowledges support by ONR (N00014-07-1-0878, N00014-07-1-0855, N00014-09-1-0921, and N00014-10-1-0436), and the United States National Science Foundation (NSF) (DMR-0639822). G.L.W. Hart is grateful for support from the NSF through grants DMR-0650406 and DMR-0908753. Many of the computations reported here, including all of the VASP calculations, were performed at the Air Force Research Laboratory Department of Defense Supercomputing Resource Center, Wright-Patterson Air Force Base, Dayton OH, under a grant from the DoD High Performance Computing Modernization Program.

Finally, the authors particularly wish to thank Prof. Harold Stokes for use of his ISOTROPY package.

References

[34] P. Villars, L.D. Calvert (Eds.), Pearson's Handbook of Crystallographic Data for Simple, Molecular-dynamics simulation of the liquid-