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Those who have not wandered amidst the mineralogical departments of natural
history museums are often surprised to learn that metals, like most other solids, are
crystalline, for although one is used to the very obvious crystalline features of quartz,
diamond, and rock salt, the characteristic plane faces at sharp angles with one another
are absent from metals in their most commonly encountered forms. However, those
metals that occur naturally in the metallic state are quite often found in crystalline
forms, which are completely disguised in finished metal products by the great mal-
leability of metals, which permits them to be fashioned into whatever macroscopic
shape one wishes.

The true test of crystallinity is not the superficial appearance of a large specnnen
but whether on the microscopic level the ions are arranged in a periodic array.!
This underlying microscopic regularity of crystalline matter was long hypothesized
as the obvious way to account for the simple geometric regularities of macroscopic
crystals, in which plane faces make only certain definite angles with each other. It
received direct experimental confirmation in 1913 through the work of W. and
L. Bragg, who founded the subject of X-ray crystallography and began the inves-
tigation of how atoms are arranged in solids.

Before we describe how the microscopic structure of solids is determined by X-ray
diffraction and how the periodic structures so revealed affect fundamental physical
properties, it is useful to survey some of the most important geometrical properties
of periodic arrays in three-dimensional space. These purely geometrical consider-
ations are implicit in almost all the analysis one encounters throughout solid state
physics, and shall be pursued in this chapter and in Chapters 5 and 7. The first of
many applications of these concepts will be made to X-ray diffraction in Chapter 6.

64 Chapter 4 Crystal Lattices

BRAVAIS LATTICE

A fundamental concept in the description of any crystalline solid is that of the Bravais
lattice, which specifies the periodic array in which the repeated units of the crystal
are arranged. The units themselves may be single atoms, groups of atoms, molecules,
ions, etc., but the Bravais lattice summarizes only the geometry of the underlying
periodic structure, regardless of what the actual units may be. We give two equivalent
definitions of a Bravais lattice?:

(a) A Bravais lattice is an infinite array of discrete points with an arrangement and
orientation that appears exactly the same, from whichever of the points the
alray is viewed.

(b) A (three-dimensional) Bravais lattice consists of all points w1th position vectors
R of the form

R = nya, + npa, + naas, (4.1)

! Often a specimen is made up of many small pieces, each large on the microscopic scale and con-
taining large numbers of periodically arranged ions. This “polycrystalline” state is more commonly
encountered than a single macroscopic crystal, in which the periodicity is perfect extending through the
entire specimen.

2 Why the name Bravais appears is explained in Chapter 7.
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Bravais Lattice 65

where a;, a,, and a; are any three vectors not all in the same plane, and nq,
1, and n3 range through all integral values.® Thus the point Zn;a; is reached by
moving n; steps* of length a; in the direction of a;for 7 = 1,2, and 3.

The vectors a; appearing in definition (b) of a Bravais lattice are called primitive
vectors and are said to generate or span the lattice.

It takes some thought to see that the two definitions of a Bravais lattice are equiva-
lent. That any array satisfying (b) also satisfies (a) becomes evident as soon as both def-
initions are understood. The argument that any array satisfying definition (a) can
be generated by an appropriate set of three vectors is not as obvious. The proof

consists of an explicit recipe for constructing three primitive vectors. The construction
is given in Problem 8a.
° ° ep ®  Figure 4.1

A general two-dimensional Bravais lattice of no
particular symmetry: the oblique net. Primitive
0s o o . vectors a; and a, are shown. All points in the net are
linear combinations of these with integral coefficients;
for example, P = a, + 2a,, and Q= —a, + a,.

4

° o 2 L]

Figure 4.1 shows a portion of a two-dimensional Bravais lattice. Clearly definition
(a) is satisfied, and the primitive vectors a; and a, required by definition (b) are
indicated in the figure. Figure 4.2 shows one of the most familiar of three-dimensional
Bravais lattices, the simple cubic. It owes its special structure to the fact that it can
be spanned by three mutually perpendicular primitive vectors of equal length.

Figure 4.2
A simple cubic three-dimensional Bravais lattice. The three

primitive vectors can be taken to be mutually perpendicular,
and with a common magnitude. :

®  We continue with the convention that “integer” means a negative integer or zero, as well as a

positive integer.
4

When n is negative, n steps in a direction means » steps in.the opposite direction. The point reached
does not, of course, depend on the order in which the n, + n, + ny steps are taken.
A two-dimensional Bravais lattice is also known as a e,

5
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Figure 4.3

The vertices of a two-dimensional honeycomb
do not form a Bravais lattice. The array of
points has the same appearance whether viewed
from point P or point Q. However, the view
from point R is rotated through 180°.

66 Chapter 4 Crystal Lattices

It is important that not only the arrangement, but also the orientation must
appear the same from every point in a Bravais lattice. Consider the vertices of a
two-dimensional honeycomb (Figure 4.3). The array of points looks the same when
viewed from adjacent points only if the page is rotated through 180° each time one
moves from one point to the next. Structural relations are clearly identical, but not
orientational relations, so the vertices of a honeycomb do not form a Bravais lattice.
A case of more practical interest, satisfying the structural but not the orientational
requirements of definition (a), is the three-dimensional hexagonal close-packed lattice,
described below.

INFINITE LATTICES AND FINITE CRYSTALS

Since all points are equivalent, the Bravais lattice must be infinite in extent. Actual
crystals are, of course, finite, but if they are large enough the vast majority of points
will be so far from the surface as to be unaffected by its existence. The fiction of an
infinite system is thus a very useful idealization. If surface effects are of interest the
notion of a Bravais lattice is still relevant, but now one must think of the physical
crystal as filling up only a finite portion of the ideal Bravais lattice.

Frequently one considers finite crystals, not because surface effects are important,
but simply for conceptual convenience, just as in Chapter 2 we placed the electron
gas in a cubical box of volume ¥V = L?. One then generally picks the finite region
of the Bravais lattice to have the simplest possible form. Given three primitive
vectors a,, a,, and as, one usually considers the finite lattice of N sites to be the set
of points of the form R = nja; + n,a, + naaz, where 0 < ny < N;,0< n, < N,
0 < n3 < N3,and N = N;N,N;. This artifact is closely connected with the general-
ization to the description of crystalline systems® of the periodic boundary condition
we used in Chapter 2.

FURTHER ILLUSTRATIONS AND IMPORTANT EXAMPLES

Of the two definitions of a Bravais lattice, definition (b) is mathematically more
precise and is the obvious starting point for any analytic work. It has, however, two

¢ We shall make particular use of it in Chapters 8 and 22.
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minor shortcomings. First, for any given Bravais lattice the set of primitive vectors
is not unique—indeed, there are infinitely many nonequivalent choices (see Figure
4.4)—and it is distasteful (and sometimes misleading) to rely too heavily on a defi-
nition that emphasizes a particular choice. Second, when presented with a particular
array of points one usually can tell at a glance whether the first definition is satisfied,
although the existence of a set of primitive vectors or a proof that there is no such
set can be rather more difficult to perceive immediately.

Further Mlustrations and Tmportant Examples 67

Figure 4.4

Several possible choices of pairs of
primitive vectors for a two-dimen-
sional Bravais lattice. They are
drawn, for clarity, from different
origins.

Consider, for example, the body-centered cubic (bee) lattice, formed by adding to
the simple cubic lattice of Figure 4.2 (whose sites we now label A) an additional point,
B, at the center of each little cube (Figure 4.5). One might at first feel that the center
points B bear a different relation to the whole than the corner points A. However,
_the center point B can be thought of as corner points of a second simple cubic array.

Figure 4.5

A few sites from a body-centered cubic Bravais
lattice. Note that it can be regarded either as a simple
cubic lattice formed from the points A with the points
B at the cube centers, or as a simple cubic lattice
formed from the points B with the points A at the
cube centers. This observation establishes that it is
indeed a Bravais lattice.

In this new array the corner points 4 of the original cubic array are center points.
Thus all points do have identical surroundings, and the body-centered cubic lattice
1s a Bravais lattice. If the original simple cubic lattice is generated by primitive vectors

ax, ay, az, ' 4.2)
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68 Chapter 4 Crystal Lattices

where %, §, and 2 are three orthogonal unit vectors, then a set of primitive vectors
for the body-centered cubic lattice could be (Figure 4.6) '

(Wﬁ\ a; = aX, a, =ay, a; = g(X +9 +2) (4.3)

Figure 4.6

Three primitive vectors, specified in Eq. (4.3),
for the body-centered cubic Bravais lattice. The
lattice is formed by taking all linear combina-
tions of the primitive vectors with integral
coefficients. The point P, for example, is P =
—a, — a, -+ 2a,.

A more symmetric set (see Figure 4.7) is 1% QQ

a a
/‘\ a; = (S’+2—X), 3225(24—&“’?), 33:‘5(&4—3\7—2) (4.4)

It is important to convince oneself both geometrically and analytically that these
sets do indeed generate the bce Bravais lattice.

Figure 4.7

A more symmetric set of primitive vectors,
specified in Eq. (4.4), for the body-
centered cubic Bravais lattice. The point
P, for example, has the form P = 2a, +
a, 4 az.

Another equally important example is the face-centered cubic (fcc) Bravais lattice.
To construct the face-centered cubic Bravais lattice add to the simple cubic lattice
of Figure 4.2 an additional point in the center of each square face (Figure 4.8). For
ease in description think of each cube in the simple cubic lattice as having horizontal
bottom and top faces, and four vertical side faces facing north, south, east, and west.
It may sound as if all points in this new array are not equivalent, but in fact they are.
One can, for example, consider the new simple cubic lattice formed by the points added
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Figure 4.8

Some points from a face-centered
cubic Bravais lattice.

to the centers of all the horizontal faces. The original simple cubic lattice points are
now centering points on the horizontal faces of the new simple cubic lattice, whereas
the points that were added to the centers of the north-south faces of the original cubic
lattice are in the centers of the east-west faces of the new one, and vice versa.

In the same way one can also regard the simple cubic lattice as being composed
of all points centering the north-south faces of the original simple cubic lattice, or
all points centering the east-west faces of the original cubic lattice. In either case the
remaining points will be found centered on the faces of the new simple cubic frame-
work. Thus any point can be thought of either as a corner point or as a face-centering
point for any of the three kinds of faces, and the face-centered cubic lattice is indeed
a Bravais lattice.

A symmetric set of primitive vectors for the face-centered cubic lattice (see F igure
4.9) is q—:
%=§@+@,%:§@+ﬂ %=§@+m. sz@

Figure 4.9

A set of primitive vectors, as given in Eq. (4.5),
for the face-centered cubic Bravais lattice. The
labeled points are P = a; + a, + a3, Q = 2a,,
R=a, +a;,and § = —a; + a, + a,,

N>

The face-centered cubic and body-centered cubic Bravais lattices are of great
importance, since an enormous variety of solids crystallize in these forms with an
atom (or ion) at each lattice sife (see Tables 4.1 and 4.2). (The corresponding simple
cubic form, however, is very rare, the alpha phase of polonium being the only known
example among the elements under normal conditions.)
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70  Chapter 4 Crystal Lattices

Table 4.1
ELEMENTS WITH THE MONATOMIC FACE-CENTERED

CUBIC CRYSTAL STRUCTURE

ELEMENT a(A) ELEMENT  a (A) ELEMENT  a (A)

Ar 526 (4.2 K) Ir 3.84 Pt 3.92
Ag 4.09 Kr 572 (58 K) 5-Pu 4.64
Al 4.05 La 530 Rh 3.80
Au 4.08 Ne 443(42K)  Sc 4.54
Ca 5.58 Ni 352 Sr 6.08
Ce 5.16 Pb 4.95 Th 5.08
B-Co 3.55 Pd 3.89 Xe (58K) 620
Cu 3.61 Pr 5.16 Yb 5.49

Data in Tables 4.1 to 4.7 are from R. W. G. Wyckoff, Crystal Structures, 2nd ed.,
Interscience, New York, 1963. In most cases, the data are taken at about room tem-
perature and normal atmospheric pressure. For elements that exist in many forms the
stable room temperature form (or forms) is given. For more detailed information, more
precise lattice constants, and references, the Wyckoff work should be consulted.

Table 4.2
ELEMENTS WITH THE MONATOMIC BODY-CENTERED

CUBIC CRYSTAL STRUCTURE,
ELEMENT  a (A) ELEMENT  a (A) ELEMENT  a (A)

Ba 5.02 Li 3.49 (78 K) Ta 3.31
Cr 2.88 Mo 3.15 3.88

Tl
Cs 6.05 (78 K) 423 (5K) \% 3.02
w

Fe 2.87 Nb 3.30 3.16

K 523 (5 K) Rb 559 (5 K)

A NOTE ON USAGE

Although we have defined the term “Bravais lattice” to apply to a set of points, it
is also generally used to refer to the set of vectors joining any one of these points
to all the others. (Because the points are a Bravais lattice, this set of vectors does not
depend on which point is singled out as the origin.) Yet another usage comes from
the fact that any vector R determines a translation or displacement, in which everything
is moved bodily through space by a distance R in the direction of R. The term “Bravais
lattice” is also used to refer to the set of translations determined by the vectors, rather
than the vectors themselves. In practice it is always clear from the context whether
it is the points, the vectors, or the translations that are being referred to.”

7 The more general use of the term provides an elegant definition of a Bravais lattice with the pre-
cision of definition (b) and the nonprejudicial nature of definition (a): A Bravais lattice is a discrete set
of vectors not all in a plane, closed under vector addition and subtraction (i.e., the sum and difference of
any two vectors in the set are also in the set).

W@&Wﬂmm’m@wmmmmmmw@ i
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Primitive Unit Cell 71

COORDINATION NUMBER

The points in a Bravais lattice that are closest to a given point are called its nearest
neighbors. Because of the periodic nature of a Bravais lattice, each point has the same
number of nearest neighbors. This number is thus a property of the lattice, and is
referred to as the coordination number of the lattice. A simple cubic lattice has co-
ordination number 6; a body-centered cubic lattice, 8; and a face-centered cubic
lattice, 12. The notion of a coordination number can be extended in the obvious way
to some simple arrays of points that are not Bravais lattices, provided that each point
in the array has the same number of nearest neighbors.

PRIMITIVE UNIT CELL

A volume of space that, when translated through all the vectors in a Bravais lattice,
just fills all of space without either overlapping itself or leaving voids is called a
primitive cell or primitive unit cell of the lattice.® There is no unique way of choosing
a primitive cell for a given Bravais lattice. Several possible choices of primitive cells
for a two-dimensional Bravais lattice are illustrated in Figure 4.10.

Figure 4.10
Several possible choices of primitive cell for a single two-dimensional Bravais lattice.

A primitive cell must contain precisely one lattice point (unless it is so positioned
that there are points on its surface). It follows that if n is the density of points in
the lattice® and v is the volume of the primitive cell, then nv = 1. Thus v = | /n. Since

8

Translations of the primitive cell may possess common surface points; the nonoverlapping Pproviso
is only intended to prohibit overlapping regions of nonzero volume.

The density » of Bravais lattice points need not, of course, be identical to the density of conduction
electrons in a metal. When the possibility of confusion is present, we shall specify the two densities with
different symbols. '

9
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this result holds for any primitive cell, the volume of a primitive cell is independent

of the choice of cell.

It also follows from the definition of a primitive cell that, given any two primitive
cells of arbitrary shape, it is possible to cut the first up into pieces, which, when

translated through appropriate lattice vectors, can be reassembled to give the second.
This is illustrated in Figure 4.11. ‘ ’

Figure 4.11

Two possible primitive cells for a two-dimen-
sional Bravais lattice. The parallelogram cell
(shaded) is obviously primitive; additional
hexagonal cells are indicated to demonstrate
that the hexagonal cell is also primitive. The
parallelogram can be cut into pieces, which,
when translated through lattice vectors, - re-
assemble to form the hexagon. The translations
for the four_{egions of the pgallelogram are:
Rggion —CO; Region II——BQO; Region II—
AQO; Region IV—no translation.

The obvious primitive cell to associate with a particular set of primitive vectors,
a1, 23, a3, is the set of all points r of the form

Ir = x1a1 + x232 + X3a3 (4.6)

for all x; ranging continuously between 0 and 1; i.e., the parallelipiped spanned by the

three vectors a,, a,, and a3. This choice has the disadvantage of not displaying the-
full symmetry of the Bravais lattice. For example (Figure 4.12), the unit cell (4.6) for the

choice of primitive vectors (4.5) of the fcc Bravais lattice is an oblique parallelipiped,

which does not have the full cubic symmetry of the lattice in which it is embedded.

Itis often important to work with cells that do have the full symmetry of their Bravais

lattice. There are two widely used solutions to this problem:

Figure 4.12
Primitive and conventional unit cells for the face-
centered cubic Bravais lattice. The conventional cell is
the large cube. The primitive cell is the figure with six
parallelogram faces. It has one quarter the volume of
the cube, and rather less symmetry.

SR
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UNIT CELL; CONVENTIONAL UNIT CELL

One can fill space up with nonprimitive unit cells (known simply as unit cells or
conventional unit cells). A unit cell is a region that just fills space without any over-
lapping when translated through some subset of the vectors of a Bravais lattice. The
conventional unit cell is generally chosen to be bigger than the primitive cell and to
have the required symmetry. Thus one frequently describes the body-centered cubic
lattice in terms of a cubic unit cell (Figure 4.13) that is twice as large as a primitive
bee unit cell, and the face-centered cubic lattice in terms of a cubic unit cell (Figure
4.12) that has four times the volume of a primitive fcc unit cell. (That the conventional
cells are two and four times bigger than the primitive cells is easily seen by asking
how many lattice points the conventional cubic cell must contain when it is so placed
that no points are on its surface.) Numbers specifying the size of a unit cell (such as
the single number «a in cubic crystals) are called lattice constants.

y/Q

Wigner-Seitz Primitive Cell 73

Figure 4.13

Primitive and conventional unit cells for the body-
centered cubic Bravais lattice. The primitive cell
(shaded) has half the volume of the conventional
cubic cell.

WIGNER-SEITZ PRIMITIVE CELL

One can always choose a primitive cell with the full symmetry of the Bravais lattice.
By far the most common such choice is the Wigner-Seitz cell. The Wigner-Seitz cell
about a lattice point is the region of space that is closer to that point than to any
other lattice point.!® Because of the translational symmetry of the Bravais lattice,
the Wigner-Seitz cell about any one lattice point must be taken into the Wigner-Seitz
cell about any other, when translated through the lattice vector that joins the two
points. Since any point in space has a unique lattice point, as its nearest neighbor!*
it will belong to the Wigner-Seitz cell of precisely one lattice point. It follows that a

1 Such a cell can be defined for any set of discrete points that do not necessarily form a Bravais

lattice. In this broader context the cell is known as a Voronoy polyhedron. In contrast to the Wigner-Seitz
cell, the structure and orientation of a general Voronoy polyhedron will depend on which point of the
array it encloses. 4

' Except for points on the common surface of two or more Wigner-Seitz cells.
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Wigner-Seitz cell, when transiated through all lattice vectors, will just fill space
without overlapping; i.e., the Wigner-Seitz cell is a primitive cell, '

Since there is nothing in the definition of the Wigner-Seitz cell that refers to any
particular choice of primitive vectors, the Wigner-Seitz cell will be as symmetrical

as the Bravais lattice.l?

The Wigner-Seitz unit cell s illustrated for a two-dimensional Bravais lattice in
Figure 4.14 and for the three-dimensional body-centered cubic and face-centered
cubic Bravais lattices in Figures 4.15 and 4.16.

Note that the Wigner-Seitz unit cell about a lattice point can be constructed by
drawing lines connecting the point to all others'® in the lattice, bisecting each line

Figure 4.15

The Wigner-Seitz cell for the body-centered cubic Bravais
lattice (a “truncated octahedron’). The surrounding cube is a
conventional body-centered cubic cell with a lattice point at
its center and on each vertex. The hexagonal faces bisect the
lines joining the central point to the points on the vertices
(drawn as solid lines). The square faces bisect the lines joining
the central point to the central points in each of the six neigh-
boring cubic cells (not drawn). The hexagons are regular (see

Problem 4d).

®  Figure 4.14
‘ The Wigner-Seitz cell for a two-dimensional
Bravais lattice. The six sides of the cell bisect
the lines joining the central points to its six
nearest neighboring points (shown as dashed
lines). In two dimensions the Wigner-Seitz
cell is always a hexagon unless the lattice is
rectangular (see Problem 4a).

Figure 4.16
Wigner-Seitz cell for the face-centered cubic Bravais
lattice (a “rhombic dodecahedron”). The surrounding
cube is not. the conventional cubic cell of Figure 4.12,
but one in which lattice points are at the center of the
cube and at the center of the 12 edges. Each of the 12
(congruent) faces is perpendicular to a line joining the
central point to a point on the center of an edge.

2 A precise definition of “as symmetrical as” is given in Chapter 7.
13 In practice only a fairly small number of nearby points actually yield planes that bound the cell.
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CRYSTAL STRUCTURE; LATTICE WITH A BASIS

A physical crystal can be described by
with a description of the arrangemen

embodying the lattice, the technical term “crystal structure” i

consists of identical copies of the same physical unit, called the basis, located at all
the points of a Bravais lattice (o1, equiv.

alently, translated through all the vectors
of a Bravais lattice). Sometimes the term lattice with a basis is used instead. However,

“lattice with a basis” is also used in a more general sense to refer to what results

object or objects, but another set of points.
nsional honeycomb, though not a Bravais
ensional triangular Bravais lattice!S with a

structure with a basis consisting of a single
Bravais lattice.

two-point basis (Figure 4.17). A crystal
atom or ion is often called a monatomic

Figure 4.17

The honeycomb net, drawn so as
to emphasize that it is a Bravais
lattice with a two-point basis. The
pairs of points joined by heavy
solid lines are identically placed in
the primitive cells (parallelograms)
of the underlying Bravais Iattice.

0, g(x +9+2) (bee) @.7)
or a four-point basis

a a a
0, 5 &+ 9), E(y + 2), ) 2+  (fo). 4.8

¥ But still idealized in being infinite in extent.

> Spanned by two primitive vectors of equal length, making an angle of 60°.
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polyhedron containing the point bounded by

giving its underlying Bravais lattice, together
t of atoms, molecules, ions, etc, within a
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SOME IMPORTANT EXAMPLES OF CRYSTAL STRUCTURES AND
LATTICES WITH BASES , e

Diamond Structure :‘E/ e sRee S0 T -/

The diamond lattice*® (formed by the carbon atoms in a diamond crystal) consists of
two interpenetrating face-centered cubic Bravais lattices, displaced along the body
diagonal of the cubic cell by one quarter the length of the diagonal. It can be regarded
as a face-centered cubic lattice with the two-point basis 0 and (/R + § + 2). The
coordination number is 4 (Figure 4.18). The diamond lattice is not a Bravais lattice,

Figure 4.18
Conventional cubic cell of the diamond lattice.
For clarity, sites corresponding to one of the
two interpenetrating face-centered cubic lattices
are unshaded. (In the zincblende structure the
shaded sites are occupied by one kind of ion,
and the unshaded by another.) Nearest-neighboxr
bonds have been drawn in. The four nearest
neighbors of each point form the vertices of a
regular tetrahedron.

because the environment of any point differs in orientation from the environments
of its nearest neighbors. Elements crystallizing in the diamond structure are given

in Table 4.3.

Table 4.3

ELEMENTS WITH THE DIAMOND CRYSTAL
STRUCTURE

ELEMENT CUBE SIDE a (A) Py

C (diamond) 357 A T U }/3;4#
Si 5.43 - LR
Ge 5.66

o-Sn (grey) 6.49

Hexagonal Close-Packed Structure

Though not a Bravais lattice, the hexagonal close-packed (hcp) structure ranks in
importance with the body-centered cubic and face-centered cubic Bravais lattices;
about 30 elements crystallize in the hexagonal close-packed form (Table 4.4).

16 We use the word “lattice,” without qualifications, to refer either to a Bravais lattice or a 1attic,e, :'

with a basis.
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Table 4.4

ELEMENTS WITH THE HEXAGONAL CLOSE-PACKED CRYSTAL

STRUCTURE

ELEMENT  a (A) c cla ELEMENT a(A) ¢ cla
Be 2.29 3.58 1.56 Os 2.74 4.32 1.58
Cd 2.98 5.62 1.89 Pr 3.67 5.92 1.61
Ce 3.65 5.96 1.63 Re 2.76 4.46 1.62
o-Co 2.51 4.07 1.62 Ru 2.70 4.28 1.59
Dy 3.59 5.65 1.57 Sc 3.31 5.27 1.59
Er 3.56 5.59 1.57 b 3.60 5.69 1.58
Gd 3.64 5.78 1.59 Ti 2.95 4.69 1.59
He 2 K) 3.57 5.83  .1.63 Tl 3.46 5.53 1.60
Hf 3.20. 5.06 1.58 Tm 3.54 5.55 1.57
Ho 3.58 . 5.62 1.57 Y 3.65 5.73 1.57
La 3.75 - 6.07 1.62 Zn 2.66 4.95 1.86
Lu 3.50 5.55 1.59 Zr 3.23 5.15 1.59
Mg 3.21 5.21 1.62 — —
Nd 3.66 5.90 1.61 “Ideal” 1.63

Underlying the hep structure is a simple hexagonal Bravais lattice, given by stacking
two-dimensional triangular nets'® directly above each other (Figure 4.19). The direc-

tion of stacking (a3, below) is known as the c-axis. Three primitive vectors are

a 3a
a, = as, a2:~x+{ 9, a; = c2.

2

(4.9)

The first two generate a triangular lattice in the x-y plane, and the third stacks the
planes a distance ¢ above one another.

The hexagonal close-packed structure consists of two interpenetrating simple hex-
agonal Bravais lattices, displaced from one another by a,/3 + a,/3 + a;/2 (Figure
4.20). The name reflects the fact that close-packed hard spheres can be arranged in

a3

N)

)

)

Figure 4.19
The simple hexagonal Bravais lattice. Two-dimensional triangular nets (shown in inset) are
stacked directly above one another, a distance ¢ apart.

la,l=lajl=a
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Figure 4.20

The hexagonal close-packed crystal structure. It can
be viewed as two interpenetrating simple hexagonal
Bravais lattices, displaced vertically by a distance ¢/2
along the common c-axis, and displaced horizontally
so that the points of one lie directly above the centers
of the triangles formed by the points of the other.
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such a structure. Consider stacking cannonballs (Figure 4.21), starting with a close-
packed triangular lattice as the first layer. The next layer is formed by placing a ball
in the depressions left in the center of every other triangle in the first layer, thereby
forming a second triangular layer, shifted with respect to the first. The third layer is
formed by placing balls in alternate depressions in the second layer, so that they lie
directly over the balls in the first layer. The fourth layer lies directly over the second,
and so on. The resulting lattice is hexagonal close-packed with the particular value

(see Problem 5):
c= \/ga = 1.63299a. 4.10)

Figure 4.21

View from above of the first two layers in a stack

of cannonballs. The first layer is arranged in a

plane triangular lattice. Balls in the second layer

are placed above alternate interstices in the first.

If balls in the third layer are placed directly

above those in the first, at sites of the type

shown in inset (a), balls in the fourth directly

above those in the second, etc., the resuiting

structure will be tlose-packed hexagonal. If,

however, balls in the third layer are placed

directly above those interstices in the first that
‘were not covered by balls in the second, at sites
of the type shown in inset (b), balls in the fourth
layer placed directly above those in the first,.
balls in the fifth directly above those in the
second, etc., the resulting structure will be face-
centered cubic (with the body diagonal of the
cube oriented vertically.)

TR S b e

i

Because, however, the symmetry of the hexagonal close-packed lattice is independent
of the c¢/a ratio, the name is not restricted to this case. The value c/a = /8/3 is
sometimes called “ideal,” and the truly close-packed structure, with the ideal value
of ¢/a, is known as an ideal hep structure. Unless, however, the physical units in the
hep structure are actually close-packed spheres, there is no reason why c/a should

be ideal (see Table 4.4).
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Note, as in the case of the diamond structure, that the hep lattice is not a Bravais

guféuﬁz;(aho‘fﬁ ' " lattice, because the orientation of the environment of a point varies from layer to
YI; distan fe o2 : layer along the c-axis. Not also that, when viewed along the c-axis, the two types
o of planes merge to form the two-dimensional honeycomb array of Figure 4.3, which

sed horizontally
yove the centers
of the other.

is not a Bravais lattice.

Other Close-Packing Possibilities

Note that the hep structure is not the only way to close-pack spheres. If the first two
layers are laid down as described above, but the third is placed in the other set of
depressions in the second—i.e., those lying above unused depressions in both the first
and second layers (see Figure 4.21)—and then the fourth layer is placed in depressions
in the third directly above the balls in the first, the fifth above the second, and so on,
one generates a Bravais lattice. This Bravais lattice turns out to be nothing but the
-z with a close- ~ face-centered cubic lattice, with the cube diagonal perpendicular to the triangular
‘placing a ball ~ —— planes (Figures 4.22 and 4.23). '
layer, thereby
e third layer is
;0 that they lie
ver the second,
articular value

Figure 4.22
How to section the face-centered cubic Bravais lattice to get
the layers pictured in Figure 4.21. '

(4.10)

ylayers in a stack
is arranged in a
the second layer
stices in the first.
: placed directly - Figure 4.23

ites of the type A cubic section of some face-centered cubic close-packed
e fourth directly spheres.

., the resulting
i hexagonal. If,
ayer are placed
; in the first that
¢ second, at sites
valls in the fourth
10se in the first,,
yve those in the
ture will be face-
" diagonal of the

is independent - There are infinitely many other close-packing arrangements, since each successive
cla = \/'8-/—3 is o layer can be placed in either of two positions. Only fcc close-packing gives a Bravais
the id&_eal .value & lattice, and the fcc (...ABCABCABC;..) and hep (...ABABAB...) structures are by
cal units in the far the most commonly encountered. Other close-packed structures are observed,

why c/a should however. Certain rare earth metals, for example, take on a structure of the form
‘ (...ABACABACABAC...).
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The Sodium Chloride Structure

We are forced to describe the hexagonal close-packed and diamond lattices as lattices
with bases by the intrinsic geometrical arrangement of the lattice points. A lattice
with a basis is also necessary, however, in describing crystal structures in which the
atoms or ions are located only at the points of a Bravais lattice, but in which the crystal
structure nevertheless lacks the full translational symmetry of the Bravais lattice
because more than one kind of atom or ion is present. For example, sodium chloride
(Figure 4.24) consists of equal numbers of sodinm and chlorineions placed at alternate
points of a simple cubic lattice, in such a way that each ion has six of the other kind
of ions as its nearest neighbors.!” This structure can be described as a face-centered
cubic Bravais lattice with a basis consisting of a sodium ion at 0 and a chlorine ion
at the center of the conventional cubic cell, (a/2)(x + § + 2).

Figure 4.24

The sodium chloride structure. One type of ion is repre-
sented by black balls, the other type by white. The black
and white balls form interpenetrating fcc lattices.

. Mace
hwy L?,( i'\ #A el CCLAAg Fel

FCC + 3451‘5

Table 4.5
SOME COMPOUNDS WITH THE SODIUM CHLORIDE STRUCTURE

CRYSTAL  a(A) CRYSTAL a(A) CRYSTAL  a (A)

LiF 4.02 RbF 5.64 CaS 5.69
LiCl 5.13 Rb(l 6.58 CaSe 5.91
LiBr 5.50 RbBr 6.85 CaTe 6.34
Lil 6.00 Rbl 7.34 SrO - 5.16
NaF 4.62 CsF 6.01 StS 6.02
NaCl =~ 564 AgF - 4.92 SrSe 6.23
NaBr 5.97 AgCl 5.55 ) SrTe 6.47
Nal 6.47 AgBr 5.77 BaO 5.52
KF 5.35 MgO 4.21 BaS 6.39
Kl 6.29 MgS 5.20 BaSe - 6.60
KBr 6.60 MgSe 5.45 BaTe 6.99
K1 7.07 CaO 4.81

The Cesinm Chloride Structure

Similarly, cesium chloride (Figure 4.25) consists of equal numbers of cesium and
chlorine ions, placed at the points of a body-centered cubic lattice so that each ion

17 For examples see Table 4.5.
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has eight of the other kind as its nearest neighbors.'® The translational symmetry
of this structure is that of the simple cubic Bravais lattice, and it is described as a
simple cubic lattice with a basis consisting of a cesium ion at the origin 0 and a chlorine

Figure 4.25

ionat the cube center (¢/2)(X + § + 2).

" "The cesium chloride structure. One type of ion is repre-

sented by black balls, the other type by white. The black
and white balls form interpenetrating simple cubic lattices.

Table 4.6

Cs CZ

GUBic
o %—— o Cs

e

CURIC ——2 (g 24) c2
SOME COMPOUNDS WITH THE CESIUM CHLORIDE :

STRUCTURE

CRYSTAL a(A) a(h)
CsCl 412 3.83
CsBr 4.29 3.97
Csl 457 4.20

The Zincblende Structure

Zincblende has equal numbers of zinc and sulfur ions distributed on a diamond lattice
so that each has four of the opposite kind as nearest neighbors (Figure 4.18). This
structure!® is an example of a lattice with a basis, which must be so described both
because of the geometrical position of the ions and because two types of ions occur.

Table 4.7

SOME COMPOUNDS WITH THE ZINCBLENDE STRUCTUR

CRYSTAL a(h) CRYSTAL  a(A) crysTAL  a (A)
CuF 4.26 ZnS 5.41 AlSb . 6.13
CuCl 5.41 ZnSe 5.67 GaP 5.45
CuBr 5.69 ZnTe 6.09 GaAs 5.65
Cul 6.04 Cds 5.82 GaSb 6.12
Agl 6.47 CdTe 6.48 InP 5.87
BeS 4.85 HgS 5.85 InAs 6.04
BeSe 5.07 HgSe 6.08 InSb 6.48
BeTe 5.54 HgTe 6.43 SiC 4.35
MaS (red)  5.60 AIP 5.45

MnSe 5.82 AlAs 5.62

~18-~Forexamples see Table 4.6.
19 For examples see Table 4.7.
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3.1 INTRODUCTION

In the previous chapter we saw that macroscopic properties of materials are influenced
strongly by atomic scale structure. In previous discussions we focused our attention on an
individual atom or ion and looked first at its spatial relationship to a single neighboring
atom, specifically, at its equilibrium separation distance; and then at its spatial relation-
ship to a small group of atoms known as its nearest neighbors, as manifested in its
coordination number and bond angles. As mentioned in Section 2.6, the local arrange-
ment of nearest-neighbor atoms about a central atom is known as short-range order
(SRO). ’

In this chapter we expand our view of materials to incorporate larger numbers of atoms.
Materials that exhibit order over distances much greater than the bond length are said to
have long-range order (LRO). In fact, materials can be classified on the basis of the extent
of LRO they exhibit: amorphous solids show SRO in three dimensions, but no LRO:
crystalline solids exhibit both SRO and LRO in three dimensions. As a general rule, most
metals are crystalline, while ceramics and polymers may be either crystalline, amorphous,
or a combination of the two.

Since an understanding of SRO and LRO is central to this chapter, it is appropriate to
pause and present a few examples. In the case of a noble gas, under most conditions the
interaction between atoms is minimal. Consequently, there is no significant positional
relationship between one gas atom and another. The material shows neither SRO nor
LRO. This is not true in most condensed phases. In a liquid, for example, nearest neigh-
bors are positioned at well-defined distances and SRO is established. The order within
most liquids, however, does not persist beyond nearest-neighbor distances. The same type
of order, SRO but no LRO, can occur in solids. As you might expect, the structure of
amorphous solids, or glasses, is similar to that of a “frozen” liquid. A detailed discussion
of amorphous solids is the subject of Chapter 6.

Many solids are crystalline. The establishment of LRO requires that atoms be arranged
on a three-dimensional array that repeats in space. The 3-D framework is known as a
crystal lattice. The details of the lattice pattern strongly influence the macroscopic
properties of crystalline engineering materials.

The organization of this chapter is as follows. First we describe the concept of a crystal
lattice and then present a few simple crystal structures. We will see that even for simple
structures, a language is needed to describe specific points, directions, and planes in
crystals. After introducing the appropriate nomenclature, we describe several methods to
quantify various characteristics of crystal lattices. We then turn our attention to a descrip-
tion of more complex crystal structures, those structures typically associated with ionic,
covalent, or molecular crystals. Next, we describe the fundamental relationship between
crystal structure and macroscopic properties, a relationship that is emphasized through-
out the textbook. Finally, we conclude the chapter with an introduction to X-ray diffrac-
tion, the technique most commonly used to characterize crystal structure,

3.2 BRAVAIS LATTICES AND UNIT CELLS

A lattice can be defined as an indefinitely extended arrangement of points each of which
is surrounded by an identical grouping of neighboring points. Before proceeding to a
discussion of three-dimensional (3-D) crystal lattices, we will introduce some of the
important characteristics of a lattice using a 2-D analogy.

Wallpaper is a common example of a 2-D lattice. The smallest region that completely
describes the pattern is known as the unit cell. Once the unit cell is established, the entire
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FIGURE 3.2-1 The possible unit cells of wallpaper, or any other 2-D pattern, include: (a) a square, (b} a rectangle,
or {c) a parallelogram. The restrictions on the lattice parameters, g and b, and the angle between the edges of the
unit cell, ¢, are listed for each type of cell.

extended pattern can be generated by translating the unit cell in 2-D. As shown in
Figure 3.2-1, the only permissible shapes for 2-D unit cells are a square, a rectangle, or
a parallelogram. The reason for this is that the unit cell must have a shape that permits
it to be arranged in a way that completely fills space. The vertices of the unit cell are
known as lattice points. The lengths of the unit-cell edges are known as the lattice
parameters. The angles and lengths within the repeat unit determine the class to which
the lattice cell belongs.

Note that all three patterns in Figure 3.2—2 have exactly the same rectangular lattice,
yet the patterns are distinguishable. Thus, the specification of a lattice alone is not
sufficient to uniquely define a pattern. In addition, one must describe exactly what is
located at each lattice point. The name given to the “group of things” located on a lattice
point is the basis. For wallpaper the basis is one or more illustrations, while for a 3-D
crystal the basis is one or more atomis. This idea can be formalized by the relationship

Lattice + Basis = Crystal structure (3.2-1)

Having introduced the important properties of a lattice in 2-D, we can focus on our main
objective—the description of 3-D crystal lattices.

R T S TSI R T T A AVA VA A S N
TN I N N | SUA A S A
N | I N B T SUA S
NN N N | R T A A

la) (b) (c)

FIGURE 3.2-2 Three examples of 2-D patterns all created using the same rectangular lattice but each having a
different basis: {a) the basis is a single character; (b) the basis contains a repeated character, and (c) the basis
contains two characters with different orientations.
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L. Cubic lattices a=b=c; ¢ = B=y=90°

°
® ° e
e
IL Tetragonal lattices a = b = ¢ a=p=y=90° IIT. Hexagonal Jattices a = p # [H
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c b

’-‘-

FIGURE 3.2_~3 The 14 Bravais lattices grouped into the 7 lattice types. The restrictions on the lattice parameters g, 4, and ¢ and the angles
between the edges of the unit cell a, B, and vy are listed for each unit cell.

There are 14 valid 3-D lattices, on which the basis—atoms or groups of atoms—can
be placed. They are called Bravais lattices and are shown in Figure 3.2-3. Each of the
lattice points is equivalent; that is, the lattice points are indistinguishable. The equiva-
lence of lattice points is demonstrated in Figure 3.2—4 for the body-centered cubic
crystal, in which the axis system is redrawn so that the “new” origin corresponds to the
center of the “original” cube.

The unit cell is the smallest volume that shows all the characteristics of the system.
Each of the cells repeats indefinitely in all directions, to the physical limits of the crystal.
The properties of a unit cell are the same as those of the crystal. Hence, a unit cell is a
convenient representative structure that can be used to calculate theoretical properties of
a crystal, such as density.

)




Yre,aEPRrY

d the angles

Tatoms—can
i. Each of the
. The equiva-
:ntered cubic
sponds to the

f the system.
»f the crystal.
unit cell is a
properties of

Chapter 3 Crystal Structures 65

———— 1

-
~
7

FIGURE 3.2-4 The equivalence of the lattice points is demonstrated for the body-centered cubic crystal by redraw-
ing the axis system so that the “new"” origin corresponds to the center of the “original” cube. Note that atom A is at
the center of the black cube and the front left bottom comer of the colored cube. Atom B is at the back right top
corner of the black cube and the center of the colored cube.

As in the previous 2-D example, 3-D unit cells are described in terms of the cell
parameters—the lengths of the cell edges and the angles between axes. Consider, for
example, the cell with the highest symmetry, the cubic cell. The axes in the cubic system
are orthogonal (all angles 90°) and the lengths of the sides of the cube are equal. Hence,
a cubic crystal is completely characterized by a single lattice parameter a,. The lattice
parameter g, is not equivalent to the equilibrium separation distance x,. The former
quantity represents the length of a cubic unit-cell edge and the latter represents the
distance between the centers of adjacent nearest-neighbor atoms. At the other extreme,
description of a triclinic crystal requires the specification of three lengths (a, b, and ¢) and
three angles (@, B, and v).

We will see in the next section that many metals have cubic structures and some have
hexagonal structures. Materials with ionic bonds typically have larger, more complex
crystal structures than metals. Since there is more than one type of atom present in ionic
solids, the complexity of the basis increases. Polymers also have complex bases and crystal
structures with large unit cells.

3.3 CRYSTALS WITH ONE ATOM PER LATTICE SITE AND HEXAGONAL CRYSTALS

In this section we examine and develop important concepts regarding unit cells for metals.
The simplest unit cell, called the simple cubic (SC) structure, has atoms located in each
of the cell corners. We will not dwell on the SC structure here, since no important metals
have this structure. Instead, we will investigate the more common metal structures.

3.3.1 Body-Centered Cubic Crystals

The simplest cells are those with cubic symmetry and one atom:-per lattice position
(ie., the basis is a single atom). Consider the structure of tungsten, shown in Fig-
ure 3.3-1. An atom lies at each corner of the cube and one in the center. This is the
body-centered cubic (BCC) structure. Each corner atom touches the central atom, but
the corner atoms do not touch each other, Other metals with the BCC structure at room
temperature include chromium, iron, molybdenum, and vanadium.

Three important characteristics of a cubic unit cell are the length of its lattice parame-
ter ay, the number of atoms in the unit cell, and the coordination number of each atom.
Although values of a, for many materials are available in the technical literature, it is
important to recognize that estimates for a, can be obtained from a knowledge of the
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FIGURE 3.3-1

shows only the logations of the atom centers, {
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(b) (d)

The structure of tungsten, a body-centered cubic metal, is illustrated in three different ways: {a) the point model

b) the full solid sphere model shows all five atoms associated with the unit cell, and

{c) the partial solid sphere model shows just the fractions of each atom contained within the unit cell. {d) An illustration of eight

adjacent unit cells showing that some of {

he atoms in the BCC unit cell are shared among several adjacent unit cells.

radius of the atoms involved, r, and the geometry of the unit cell. To obtain the relation-
ship between the lattice parameter and the atomic radius (the ao-r relationship), find a
direction in which atoms are touching, and equate the expression for atom center-
to-center distance in terms of aq to the equivalent distance in terms of r.

Figure 3.3-2a shows that for a cube with edge length aq, the length*‘ofv any face
diagonal is ao\/i and the length of any body diagonal is ao\/g. Therefote, the distance
between adjacent atoms in the BCC structure is ao\/g/ 2 (see Figure 3.3-2b). The repeat
distance in terms of r is 2, so that the ao-r relationship is

ayV3 4r
—"2— —=2r  or  ayBCC) :% (3.3-1)

Next, we determine the number of atoms per cell. Examination of Figure 3.3—1d shows
that nine atoms are associated with each cell but some atoms are shared among several
cells. Notice that each corner atom is shared by eight cells. Therefore, only 1/8 of any
corner atom is associated with each cell. In contrast, a center atom is totally contained
within its cell. Thus, the total number of atoms per unit cell is two [ (8:X 1/8) + (1 X 1)].
Examination of Figure 3.3—1 shows that each atom in the BCC structure has eight nearest

neighbors [CN(BCC) = 8].
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AU e 1
/// aoﬁ/ (I’;\/g/2
o

Distance between centers of
adjacent atoms

{a) {b)
FIGURE 3.3-2 (a) For a cube with edge length ay, the length of any face diagonal is ao\/§ and the length of any
body diagonal is a,V/3. (b} The distance between adjacent atoms in the BCC structure may be expressed as either
a[,\/ﬁ/Z or, equivalently, 2r.
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Using data on atomic weight and atomic radius (in Appendices B and C), calculate the density of
BCC Fe.

Solution

Density is defined to be mass divided by volume. Since the unit cell completely describes the crystal
structure, we can calculate the density of iron based on the mass and volume of its unit cell. The
mass of the unit cell, M,., can be determined by noting:

_ Number of atoms Mass
e Unit cell Atom

The volume of the unit cell, V,., is just a3. For iron,

M 2 atoms (55.85 g/mol Fe) ~ 1 mol Fe >
we = . . mo
BCC unit cell & 6.023 X 10? atoms Fe

1.85 X 10722 g/(unit cell)

1

and

1%

3 _ 3
e <4r> _ [4x (1.24 X 10 Scm)]
uc o \/—3- \/g

= 2.35 X 1072 cm®/(unit cell)
Therefore, the density of iron is calculated as

_1.85 X 107 g/(unit cell)
2.35 X 10723 cm?¥/(unit cell)

= 7.87 g/lcm®

P

The measured density of Fe is also 7.87 g/cm®. In general, however, we should not expect perfect
agreement between the density estimate obtained using this method and the measured density of a
solid, since our model assumes that the crystal is “perfect” while real crystals contain defects. These
defects will be discussed in the next two chapters.

...........
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3.3.2 Face-Centered Cubic Crystals

Another common unit cell with cubic symmetry and one atom per position is the face-
centered cubic (FCC) structure. Metals that have the FCC structure at room temperature
include aluminum, calcium, copper, gold, lead, nickel, platinum, and silver. As shown in
Figure 3.3-3, this structure has an atom at each corner plus an additional atom at the
center of each face. Each corner atom touches the atoms in the centers of the three
adjacent faces, but corner atoms do not touch other corner atoms.
Since atoms touch along a face diagonal, the repeat distance is ao\/i/Z, or, equiva-

lently, 2r. The aq-r relationship is:

(FCC) = (3.3-2)

a D e— . o3,

’ V2 |
Since each face is shared by two unit cells, there are four atoms per FCC cell
[(8 X 1/8) + (6 X 1/2)]. Examination of Figure 3.3-3 shows that each atom in the
FCC structure has 12 nearest neighbors, or CN(FCC) = 12. Consider, for example, the

FIGURE 3.3-3 The structure of a face-centered cubic unit cell: (a) the point model shows only the locations of the
atom centers, (b) the full solid sphere model shows all 14 atoms associated with this unit cell, and {c} the partial
solid sphere model shows just the fractions of each atom contained within this unit cell; (d) The distance between
adjacent atom centers in FCC can be expressed as either au\/§/2 or, equivalently, 2r.
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atom in the center of the top surface of the cube. Its nearest neighbors are the four atoms
in the centers of the vertical faces of the unit cell, the four corner atoms on the top surface
of the cell, and the four atoms on the vertical faces of the unit cell that is positioned just

above this unit cell.
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EXAMPLE 3.3-2

Calculate the density of aluminum. Then discuss why the aerospace industry prefers aluminum-
based alloys to iron-based alloys and why iron-based alloys are preferred over aluminum alloys in
structural members of bridges and buildings.

Solution
Using the procedure in Example 3.3-1, we find

e

Density =
with
Number of atoms Mass
MUC = . X
Unit cell Atom
and
Vuc = 0(3)

For FCC aluminum,

M 4 atoms (26.98 g/mol Al 1 mol Al
=\ . mo.
e FCC unit cell & 6.023 X 10?* atoms Al

1.79 X 107% g/(unit cell)

% 3 <4r P T4 x (143 % 1078 em) ]
we = Ay T\ =] T -
V2 V2 ’

= 6.62 X 1072 cm®/(unit cell)

I

and

Therefore, the density of aluminum is calculated as

179 X 107 g/(unit cell) |
P~ 662 X 1072 cm?/(unit cell) ;
= 2.70 g/em® ' ;

The measured density of aluminum is also 2.70 g/cm®. A comparison of the density of aluminum -
with that of iron (p = 7.87 g/cm®) partially explains why aluminum alloys are preferred to iron

- alloys in the aerospace and other industries where minimizing the weight of structures is a critical

design parameter. For the same cross-sectional area, sieels (iron-based alloys).can sustain higher
load levels and can also provide more stiffness against bending compared with aluminum alloys.
Thus, if weight is not a consideration but volume of material is important, steel members have a
higher load-bearing capacity than aluminum alloys. Other advantages of steel include cost and its
weldability compared with aluminum.

EANTINEE R EACNTEIIRARANERCEASRINEINNS tunaas samasEaaTERE suaans essEsacxaTIRIRRTAER wxsnan vesazsen xeaanve ersvEsIzeRIIIAN IRLEYITNL) nrassven .

333 Hexagonal Close-Packed Structures

The structure of a hexagonal system is most easily visualized by considering three unit
Qells arranged to form one larger cell, as shown in Figure 3.3—4a. The larger cell is not
a unit cell, since the structure can be completely characterized by an even smaller volume
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- FIGURE 3.3-4  The structure of simple hexagonal (SH) and hexagonal close-packed {HCP) unit cells: {a) a point model of an SH unit cell
& f showing the geometric relationship between the smaller primitive unit cell and the more convenient “large” unit cell; (b) a point mode! of

the “large” unit cell for the HCP structure showing several neighboring unit cells; (¢) the full solid sphere model for the HCP structure: and
(d) an illustration of the 12 nearest neighbors for an atom in an HCP unit cell.

of material. Nevertheless, it is often more convenient to visualize and solve problems using
this “big” cell. The upper and lower surfaces of the large cell are hexagons, and the six
side faces are rectangles. In the simple hexagonal (SH) structure, atoms are positioned at
each corner and in the center of the hexagonal faces. Although the; SH structure is not a
common crystal structure, one of its variations, the hexagonal close-packed (HCP)
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structure, is characteristic of many metals, including cadmium, cobalt, magnesium, tita-
pium, yttrium, and zinc at room temperature. The HCP crystal structure is shown in
Figure 3.3-4b. Note that there are six atoms at the corners of the top and bottom planes,
each shared by six unit cells; one atom in the center of the upper and lower basal planes,
each shared by two cells; and three atoms in the midplane. Thus, the total number of
atoms in the large HCP cell is six [(12 X 1/6) + 2 X 1/2) + (3 X 1)]. Since each
large cell consists of three unit cells, each unit cell contains two atoms.

As shown in Figure 3.3—4c, each of the six corner atoms in the top and bottom
hexagonal planes, known as the basal planes, touches the central atom. If ay is defined to
be the length of the unit-cell edge, then the ay-r relationship is simply ag = 2r. A complete
description of the dimensions of the cell, however, requires an expression for its height,
or the perpendicular distance between the basal planes. In the ideal HCP unit cell, the
height, ¢, is related to g, and hence r, through the expression

4

c= <——/~6>ao = 1.633a, = 3.266r (3.3-3)
This relationship assumes that the atoms are perfect rigid spheres. Since this assumption
is not always satisfied, many real HCP metals display a c/a, ratio significantly different

from 1.633 (see Table 3.3—1). The volume of a “large” HCP cell is
V3
V,.(large HCP) = <~§—>a§c (3.3-4)

The number of nearest neighbors in the HCP system is 12, or CN(HCP) = 12. This can
be seen by considering the central atom in the lower basal plane. As shown n
Figure 3.3—4a, this atom has six nearest neighbors in its own plane and three nearest
neighbors in the parallel planes above and below.

TABLE 3.3-1 The ¢/a ratios for
selected HCP
metals at room
temperature.

_ ¢/a ratio

3.4 MILLER INDiCES

In this section we introduce the notation known as Miller indices, ‘which is the most
common convention used to describe specific points, directions, and planes in the crystal-
lattice systems. Before proceeding with the details of the convention, however, we show
the need for indexing using an example. Consider the geometry shown in Figure 3.4-1.
In the next chapter we will need to know the angle between the direction from left to
tight along the bottom back edge of the cube and the direction from the bottom back left
‘corner through the center of the cube. The Miller index notation not only simpliﬁgs the

n
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FIGURE 3.4-2

Miller indices—n, &, I—for
naming points in a crystal
Iattice. The origin has been
arbitrarily selected as the
bottom left back corner of

the unit cell.
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Direction
of interest
1
P A
e Direction of
~ .
applied force

FIGURE 3.4-1 Examples of two directions, in a cubic unit cell. The direction of the applied force can be described

as a projection from the bottom back left corer of the cube through the hottom back right cube comer. The cumber-
some nature of this description provides some of the motivation for the development of a more concise nomenclature
for naming points, directions, and planes in crystals.

description of directions, but also permits simple vector operations like the dot and Cross
products.

3.4.1 Coordinates of Points

The first step in the description of crystal structures is to select a coordinate system. We
have elected, as is Customary, to use a right-hand Cartesian coordinate system throughout
the text. The next step is to orient the coordinate system in the unit cell. As shown in
Figure 3.4-2 for a cubic unit cell, the most common orientation is to align the three
coordinate axes with the edges of the unit cell, with the origin at a corner of the cell. It
is important to note, however, that the choice of an origin is arbitrary, and the selection
of an origin is a matter of convenience for each problem under consideration.

Having defined a coordinate system, points within the lattice are written in the form
h, k, I, where the three indices correspond to fractions of the lattice parameters a, b, and
¢. Recall that the lattice parameters a, b, and ¢ correspond to the length of the unit-cell
edge in the x, y, and z directions, Hence, with reference to Figure 3.4-2, the three corners
along the axes, marked A, B, and C, are 1, 0,0,0, 1, 0; and 0, 0, 1. Across the body
diagonal at point D, the position is 1, 1, 1. Across the face diagonal the coordinates at E,
F,and G are 1, 1, O; 0,1, 1;and 1, 0, 1.

C F . .
r Position Coordinate
! D 0 0, 0, 0 (Origin)

G | A 1,0,0
i B 0,1,0
1 i c 0,0,1
] D 11,1
: P E 1,1,0
O _ DY G F 0,1,1
P y -G 1,0,1

i H" 12,1, 12

A E
X

EXAMPLE 3.4-1
Sketch a cubic unit cell and answer these questions:
a. What are the coordinates of the points located at the centers of the six faces?

b. What are the coordinates of the point at the center of the cube?
¢. Locate the point 1/4, 3/4, 1/4.

FIG
oo
is fc
final

34.
Mil.

Sever
the o
geomu
well a
[011




be described
The cumber-
yomenclature

it and cross

system. We
throughout
s shown in
a1 the three
the cell. It
1e selection
1

in the form
ts a, b, and
he unit-cell
ree corners
s the body
inates at E,

Chapter 3 Crystal Structures 1

Solution
A cubic unit cell is sketched in Figure 3.4-3. The first step is to select an origin and orient the
coordinate axes. We have elected to use the bottom back left corner of the cube as our origin.

a. As shown in the figure, the six face centers have coordinates 0, 1/2,1/2;1/2,0, 1/2;
1/2,1/2,0; 1, 1/2,1/2; 1/2, 1, 1/2; and 1/2,1/2, 1.

b. The cube center has coordinates 1/2, 1/2, 1/2.

¢. The point 1/4, 3/4, 1/4 can be located by starting at the origin and moving out a dis-
tance of 1/4 of a lattice parameter in the x direction, then 3/4 in the y direction, and
finally 1/4 in the z direction. This procedure is shown in Figure 3.4-3b.

T 1/2,1/2, 1 z T

i |
i 1
' 0,172,112
! N ! 1/4,3/4, 1/4
1/2,0,1/2 —~l | {,o |
o — A T O] |
N R |
1,172,127 Lo lo ag4
/‘_-—.*——_— — e dO/4 o — [
ey y o 3ag4 —H y
112,112, 1/2
P
x 12, 1/2,0 x

(a) {b)

FIGURE 3.4-3 A cubic unit cell with the origin, point 0, located at the bottom back left corner showing (a) the
coordinates of the six face centers and the center of the cube, and (b) the location of the point 1/4, 3/4, 1/4, which
is found by starting at the origin and moving & distance a,/4 in the x direction, then 3ao/4 in the y direction, and
finally a/4 in the z direction.

3.4.2 Indices of Directions
Miller indices for directions are obtained using the following procedure:

1. Determine the coordinates of two points that lie in the direction of interest—
hy, ky, 1, and hy, k,, I,. The calculation is simplified if the second point cot- )
responds with the origin of the coordinate system. '
2. Subtract the coordinates of the second point from those of the first point:
W o=h —hy kK =k —kgsandl =1, — L.
3. Clear fractions from the differences—*#’, k', and I'—to give indices in low-
est integer values, &, k, and 1. iy
4. Write the indices in square brackets without commas: [h k).
5. Negative integer values are indicated by placing a bar over the integer. For
example, if h < 0, we write [h & [].

Several examples are shown in Figure 3.4-4. Again we have used a cubic unit cell with
the origin at a cube corner, although the technique is not restricted to this simple
geometry. The nearest cube corners are in the directions [100],[010],and[00 1]as
well as [1 0 0], [0 T 0], and [0 O 1]. The body diagonalis [1 1 1]. The face diagonals are
[011],[101],and 1 10].
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FIGURE 3.4-4 Miller indices—Ih k /]—for naming directions in a crystal lattice. The origin has been arbitrarily
selected as the bottom left back comer of the unit cell.
EXAMPLE 3.4-2 Note
Determine the Miller indices of the directions shown in Figure 3.4-1. were cl
L about k
Solution .
to perf
The problem can be simplified by selecting the bottom left back corner of the cube as the origin and directic
defining the x, y, and z axes as shown in Figure 3.4—4. Since the coordinates of the bottom right meanin

back corner of the cube are 0, 1, 0, we find:

hy, ki, 1, =0,1,0 and hy, ky, Iy = 0, 0, O (the origin)

and /' = 0,k' = 1, and I' = 0. Since there are no fractions to clear, the indices for the direction b

along the bottom back edge are [0 1 0]. The second direction can be named in a similar way with Determi
reference to the point at the center of the cube (i.e., hy, &y, Iy = 1/2, 1/2, 1/2). In this case we find
h' = k' =1' = 1/2.1Is the direction then [1/2 1/2 1/2]? No, this notation is invalid, since we have
agreed that the indices for directions will always take on integer values. We must clear the fractions
in [1/2 1/2 1/2] by multiplying each term by 2 in order to obtain the correct notation, [1 1 1].
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If the properties of a crystal are measured in two different directions and found to be
identical, then those directions are termed equivalent. For example, the properties of a cubic
crystal measured along [1 0 0] are the same as those along [0 1 0]or[00 1]. Similarly, all
the face diagonals are equivalent, and all the body diagonals are equivalent. We refer to
these families of directions using angle brackets: (h k I). Thus, the edges of a cube
comprise the family of directions (1 0 0), the face diagonals comprise (1 1 0), and the body
diagonals comprise {1 1 1). Note that for cubic unit cells the individual members of a family
can be generated by taking all of the permutations of the symbols &, k, and /, using both
positive and negative integers.

EXAMPLE 3.4-3
List the individual members of the family of directions (1 1 0) for a cubic unit cell.

Solution

We must find all of the permutations, both positive and negative, of the values 1, 1, and 0: [1 1 0], i
[1015,[011]},[T10L{101L[0T1),{110L[101},[011],[T10L[10T}and[0T1].0t & HGURE
may be useful for you to sketch these 12 directions and convince yourself that they are in fact i
equivalent. <

them. The
the bound.
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It is frequently necessary to determine the angle between directions. After you have
drawn the directions of interest in a unit cell, it is sometimes possible to determine the
angle by inspection. Alternatively, in cubic crystals only, the angle between directions can
pe determined by taking the vector dot product. If

A = ui + vj + wk and B=ui+0vj+wk

then

A-B=]A||B|cos 0 (3.4-1)

where 6 is the angle between the two vectors. Solving for § yields:

w4+ oot 4+ oww’ }

8 = cos™! e , 3.4-2
[(112 + o+ w)E W A o W) ( , )

Note that because of step 3 in the algorithm used to define directions, in which fractions
were cleared to result in indices with integer values, directions do not contain information
about length. Consequently, directions are not true vectors. Fortunately, it is still possible
to perform vector algebra operations on crystallographic directions, as long as only
directional information is utilized. Information related to magnitude has no physical
meaning for crystallographic directions.

---------------------------------------------------------------------------------------------------------------------------------------

EXAMPLE 3.4-4
Determine the angle between the directions [0 1 1] and [0 0 T].

Solution
By inspection of the sketch shown in Figure 3.4-5 we can see that the angle between the cube edge
and the face diagonal is 45°. The solution can also be obtained using Equation 3.4-2:

@
Il

Cos_l[o X0+ 1X0+ (~1) X (—1)]
VO+1+1D)VO+0+1)

I

1
cos"(-——) = 45°
V2

y

[001] iy \

A== =1 F———

FIGURE 3.4-5 A sketch of a cubic unit cell showing the directions [0 1 7] and [0 0 7] and the angle § between
them. The origin was selected as the top left back comer of the cube so that both directions could be drawn within
the boundaries of the unit cel.
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FIGURE 3.4-6

Mitler indices—{h & /}—for
naming planes in a crystal
lattice. The origin has been
arbitrarily selected as the
bottom left back comer of
the upper unit cell in part
(a) and the bottom left
el back corner of the unit cell
in part {b).
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3.4.3 Indices of Planes
Miller indices for planes are obtained using the following procedure:

1. Identify the coordinate intercepts of the plane, that is, the coordinates at
which the plane intersects the x, y, and z axes. If the plane is parallel to one
of the axes, the intercept is taken as infinity (c0). If the plane passes through
the origin, consider an equivalent plane in an adjacent unit cell or change the
location of the origin used to name the plane.

2. Take the reciprocal of the intercepts,

3. Clear fractions, but do not reduce to lowest integers.

4. Cite planes in parentheses—(h k I)—again placing bars over negative
indices.

Several examples of planes are shown in Figure 3.4—6. The (100), (010), and
(00 1) planes—the cube faces—are mutually orthogonal. Similarly, (1 10) and
(11 0)—the planes that connect opposite edges through face diagonals—are orthogonal.
Families of planes are expressed in braces: {h k I}. All planes in a family are equivalent
in that they contain exactly the same arrangement of atoms. In cubic systems the members |
of a family of planes can be listed by taking all possible permutations of the indices. For | Eil
example, the members of {1 0 0} are (1 00), (0 1 0), and (00 1) and their negatives
(100),(010),and (001).

Working with the indices for directions and planes will familiarize you with several

important features and relationships: Ple
isy
1. Planes and their negatives are equivalent. The negatives of directions are not of
equivalent but rather point in opposite directions. 0,
2. Planes are not necessarily equivalent to their multiples. Directions are invari- Al
ant to a multiplier, Th
. . . . . . rec
3. In cubic crystals, a plane and a direction with the same indices are orthog- a
onal. : Th
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EXAMPLE 3.4-5
Determine the indices of the planes labeled A and B in Figure 3.4—7a. Then sketch plane (1 3 0).

. "
a3 1’
o [

l
4
Plane A :
I
— f
By |

A — e

/// O” y

Pl Y
, Plane B
X, X

(a) (b}

FIGURE 3.4-7 The cubic unit cells, coordinate systems, and planes referred to in Example 3.4-5.

Solution

Plane A can be named by choosing the bottom back left corner of the cube as the origin. Plane A
is parallel to the x axis (intercept = o) and intersects both the y and z axes at 1. Taking reciprocals
of the intercepts, plane A is the (0 1 1) plane with respect to origin O. Since plane B passes through
0, it cannot be named using the same coordinate axes. What point should we use for the new origin?
Although there is no unique answer to this question, a good choice is the front left bottom corner.
The intercepts for this origin (O’ in the figure) are x' = —1, y' =1, and z' = 1/2. Taking
reciprocals of the intercepts, plane B is the (1 1 2) plane with respect to 0. To sketch the plane
{1 3 0), we note that the reciprocals of the indices are the intercepts: x = 1,y = —~1/3,andz = =,
The infinite intercept in the z direction means that the plane is parallel to the z axis. Since the x
intercept is positive and the y intercept is negative, a good choice for the origin is the bottom back
right corner (0" in the figure). After plotting the x and y intercepts, draw lines through each intercept
parallel to the z axis. The two lines define the plane (1 3 0).
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3.4.4 Indices in the Hexagonal System .

The notation used to describe points, directions, and planes in hexagonal lattices is similar

~ to that used in cubic systems. As shown in Figure 3.4-8, there are four crystallographic:

axes in the hexagonal solid, which are most often referenced with réspect to an origin
located in the center of the basal plane. The three a axes are contained within the basal
plane and the ¢ axis is perpendicular to the basal plane. Since the hexagonal lattice has
four coordinate axes rather than the three axes characteristic of the cubic systems, the
Miller index convention for hexagonal systems is a bit more complex. Since we will be
able to describe most of the important characteristics of HCP crystals without the aid of

‘the numerical naming convention, we have elected to simplify our presentation by omit-

ting the development of such a convention. Instead, we will simply refer to the impdrtant
directions and planes as the a and ¢ directions and the basal planes.
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The important directions and
planes in hexagonal unit cells.
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The previous sections have introduced some of the terms and notations of crystallography.
In the next few sections we use these tools to determine some important characteristics
of crystals. In particular, this section deals with the calculation of linear, planar, and
volumetric densities.

381 Linear Density

The linear density p, is the number of equivalent lattice points per unit length along a
direction. Thus, p, is defined as:
Number of atoms centered along direction within one unit cell

pL = : : — ; (3.5-1)
Length of the line contained within one unit cell

As an example, consider the [1 1 0] direction in an FCC crystal, as shown in
Figure 3.5—1a. Atoms lie at the endpoints and the center of the face diagonal. Thus, there
are three atoms associated with this direction. The two corner atoms, however, are shared
with the continuation of the face diagonal in neighboring unit cells. Since some of the
atoms are shared, we use weighting factors to determine the actual number of atoms along
a face diagonal within a single unit cell. Since this is a linear calculation, the appropriate
weighting factors can be envisioned using a linear sketch. Using Figure 3.5-1b, we see
that we are interested in the fraction of the atomic diameter that lies within a single unit
cell. In the case of p, for [1 1 0] in FCC, therefore, the number of atoms is 2
[ie, (2 X 1/2) + (1 X 1)], and the length of the line is 4. Thuss using Equation 3.5-1,
po for [1 1 0)in FCC is 1/(20).

The (1 1 0) family of directions has special significance in the FCC structure, since
these are the directions in which atoms are in direct contact. As such, (1 1 0) directions
have the highest p, of any directions in the FCC system. In any crystal system, the
directions with the highest p, are termed the close-packed directions.

Note that the weighting factor for a corner atom or any other shared atom depends on
the dimension of the calculation. In this linear calculation the corner atom contributed a
factor of 1/2 (of a diameter). In contrast, its weighting factor was 1/8 (of a sphere) when
we were counting the number of atoms in an FCC unit cell in Section 3.3.2 for a 3-D
calculation.
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FIGURE 3.5-1 (a) The portion of the {1 1 0] direction contained within a single FCC unit cell is sketched in 3-D;
(b} the same direction sketched in 1-D [shown within the (0 0 ) planel; (¢} the portion of the {1 1 1] direction con-
tained within a single BCC unit cell is sketched in 3-D; (d) the same direction sketched in 1-D [shown within the

{1 70) plane].

EXAMPLE 3.5-1
Calculate the linear density along [1 1 1]in a BCC material. Repeat the calculation for the [1 1 0]
direction in BCC.

Sclution
The appropriate sketches are shown in Figure 3.5—1c and d. Using Equation 3.5-1, we find:

(2 corner atoms X 1/2) + (1 body-centered atom X 1)
PL =
4r

Hence, the linear density along {1 1 1] in a BCC material is also 1/{(2r). Since this is the direction
in which atoms are in direct contact, the (1 1 1) directions are the close-packed directions in the
BCC structure. For the [1 1 0] direction:

2 corner atoms X 1/2 V3
PL = =
agV2 4\V2

where we have made use of the ag-r relationship for BCC given in Equation 3.3~1. Thus, in BCC
the linear density in the close-packed directions is about 63% higher than in the (1 1 0) directions.

....................................................................................................
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3.5.2 Planar Density

Planar density p; is the number of atoms per unit area on a plane of interest. Only atoms
centered on the plane are considered, and the weighting factors for shared atoms are based
on area fractions. In analogy with Equation 3.5-1, we define p, as:

Number of atoms centered on a plane within one unit cell

Dp = - : — - (3.5-2)
Pr Area of the plane contained within one unit cell

Consider the planer density of the (1 1 1) plane in an FCC crystal. As shown in Fig-
ure 3.5-2a and b, the portion of this plane contained within a unit cell is composed of
an equilateral triangle. The length of the side of each triangle is 4r, since atoms are in
direct contact along each edge of the triangle (note that each edge is a member of the
(1 1 0) family of directions). The area of this triangular plane can be calculated as 4r2V/3,
Next we determine the number of atoms in the plane. Each of the three atoms at the
corners of the triangular plane contributes an area fraction of 1/6 (i.e., 60°/360°), and the
three atoms along the edges of the triangular plane each contribute an area fraction of 1 /2.
Thus, the total number of atoms on the plane is two. Using Equation 3.5-2, we find that
the planar density on the (1 I 1) plane of an FCC crystal is 1/(2\/371‘2),

This value of p, represents the highest possible planar density for spherical atoms.
Therefore, any plane in any crystal system that has a value of p, = 1/ (2\/§r2) will be
referred to as a close-packed plane. While all crystal systems have close-packed direc-
tions, not all systems contain close-packed planes. For any specific crystal system, how-
ever, there will be a family of planes with a maximum p, value for that system. We will
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FIGURE 3.5-2 {a) The portion of the {1 1 1) plane contained within a single FCC unit cell is sketched in 3-D;
{b) the same plane sketched in 2-D; {e) the portion of the (1 1 0} plane contained within a single FCC unit cell is
sketched in 3-D; {d) the same plane sketched in 2-D.
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Chapter 3 Crystal Structures

The close-packed directions and highest-density planes in the BCC, FCC, and HCP
crystal structures.

TABLE 2.5-1

Crystal ‘V‘Clos'e-‘packed"’ Iﬁgi‘iES‘t¥,ﬂéhsit)"*ﬁ';‘V' i ‘A;‘élihé ‘higiiést-d’en'sﬁy“
strueture oo directions planes 0 planes close-packed? .
A G '
a0
a

refer to these planes as the highest-density planes. By our definitions all close-packed
planes are highest-density planes, but not all highest-density planes areclose-packed
planes. Table 3.5-1 lists the close-packed directions and the highest-density planes for the
BCC, FCC, and HCP crystal structures.

O LT L LT LT R L A L AL A AL LA LALLM

EXAMPLE 3.5-2
Determine the planar density of (1 1 0) in an FCC crystal.

Solution
The appropriate sketches are shown in Figure 3.5-2¢ and d. Using Equation 3.5-2, we find:
(4 corners X 1/4) + (2 face centers X 1/2) 2

p =
: ag X aV2 aA\V2
Using ao(FCC) = 41‘/\/5, as given in Equation 3.3-2, we find:

< 2 ><\/§>2 1

pp=l—=)-=) =——

T\Wa/\ar ) a2

The planar density of (1 1 0) in FCC is 1/(4V/2r?). It is interesting to compare this value with the

corresponding pp value for the (1 1 1) plane in FCC[= 1/(2V3r)]. pponthe (1 1 0) planes is only
about 61% of that on the close-packed planes.

e NEREERTER RN TR R Ry RN E RSN RIE IR RN RN TEA SN A NI ANAN RN EANEA RN ESS ORI RN E A AN TN EEAEEEIEANEA AN E T EANCNADRRURTNN

EXAMPLE 3.5-3

The highest-density planes in the BCC structure are the (I 1 0) planes. Determine the planar density
of (11 0) in a BCC crystal, then compare this value with the planar density of the close-packed
‘planes in the FCC structure.

Solution

Using the same procedure as in the previcus example, we find:
(4 corners X 1/4) + (1 body center X 1) 2
pr = =
ap X ao\/i atVv?

Using a(BCC) = 4r/\V/3, as given in Equation 3.3~1, we find:

v (HE) o

Thus, p, of (1 10) in BCC is 3/(8\/51'2). Comparing this with pp of (1 11) in FCC [=
1/(2V/3r?)), we find that the value for the highest-density planes in BCC is about 92% of that for
the close-packed planes in FCC. We will learn later that this result explains in part the difference
.in the mechanical properties of BCC and FCC metals.
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3.5.3 Volumetric Density

Volumetric density (py) is the number of atoms per unit volume. The weighting factors
for shared atoms are based on volume fractions.

Consider an FCC crystal. As shown previously, there are four atoms per unit cell. The
cell volume is V = a3 = (4/\V/2)> = 16V2r>. Thus, py for FCC is 4/(16\V2/%) =
1/(4V/2¢%). This is the highest volumetric density possible for spherical atoms. Crystal
structures that display this value of p, will be referred to as close-packed structures. As
the name suggests, HCP crystals also have p, = 1/(4V/2r3).

T N R NN T TN N R X e TN TR YN0 N T AR AN E R T e N TR KK S E AN IE O E N UE YN Z IS FEEIIETCCAN e EFATANEREaIRETIINEL TS

EXAMPLE 3.5-4
Verify that py = 1/(4V2r3) for HCP.

Salution

The volume of the “big” HCP unit cell is equal to the area of the basal plane multiplied by the height
of the cell. As shown in Figure 3.3—4b, the basal plane is composed of six equilateral triangles. The
side of each triangle is 2r, since atoms are centered at each apex and touch at the midpoint of each
side. The area of each triangle can be calculated as:

Area = (%)b X h= (%)(2)‘)()‘\/5) =3

The area of the basal plane is then 6r2V/3. Combining this result with the c:r relationship,

c= (8/\/61'), yields:

V(HCP) = (6V3r2) (%);- = 24V2r?

The number of atoms in the “big” HCP unit cell has been shown previously to be six. Therefore,

6
PV(HCP) = — =

3.5.4 Atomic Packing Factors and Coordination Numbers

The ratio of the volume occupied by the atoms to the total available volume is defined to
be the atomic packing factor (APF) for the crystal structure. Thus, APF is calculated
using any of the following equivalent expressions:

Volume of atoms in the unit cell
APF = - (3.5-3a)
Volume of the unit cell

or

_ (Number of atoms in cell) X (Volume of an atom)

APF (3.5-3b)

Volume of the unit cell

4 5 <
APF = p, 3 ™ (3.5-3¢)

or

For the crystal structures discussed previously: APF(SC) = 0.52, APF(BCC) = 0.68,
and APF(FCC) = APF(HCP) = 0.74. It should not be surprising to find that the highest
APFs occur for the two close-packed structures.
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Chapter 3 Crystal Structures

Why is it that most metals have either the FCC or the HCP structure whereas no
important metals have the SC structure? It has been shown previously that it is energet-
ically favorable for atoms to arrange themselves in a way that leads to the tightest packing
and highest coordination numbers possible within the constraints of atom size (and
valence in the case of covalent bonds). Combining the above information about APFs with
a listing of the CNs for the various metal structures [CN(SC) = 6, CN(BCC) = 8, and
CN(FCC) = CN(HCP) = 12] provides the answer to this question. In most cases one of
the two close-packed structures represents the energetically favored arrangement of
atoms. The SC structure is the least favorable atomic arrangement, and BCC is interme-
diate. In the next section we will investigate the differences between FCC and HCP

structures.

EXAMPLE 3.5-5
Use a calculation to verify that the APF for the BCC structure is 0.68.

Solution
As discussed in Section 3.3.1, there are two atoms per cell in the BCC structure, and the ay:r
relationship is a(BCC) = 41‘/\/5‘ Substituting these values into the definition of APF given in
Equation 3.5-3b yields:

A@/3)mr’] V3

APF(BCC) = =
(BCO) /N33

355 Close-Packed Structures

Although the FCC and HCP structures are similar, they have important fundamental
differences. Both structures are characterized by an APF of 74% and a CN of 12. Both
have sets of planes with the highest possible planar density, the close-packed planes; and
both have directions with the highest possible linear density, the close-packed directions.
The difference between the structures is in the arrangement of their close-packed planes.
Stacking sequence can be visualized by looking along the ¢ direction in the HCP
structure and along [1 I 1] in the FCC structure, as shown in Figure 3.5-3a and b.
Consider the arrangement of atoms on one of the close-packed planes. Each atom is
surrounded by six nearest neighbors in that plane. When a second layer of close-packed
atoms is placed on top of the first layer, the atoms in the second layer do not lie directly
on top of the atoms in the first layer. Rather, they lie in wells directly above the centers
_of the “holes” in the first layer (see Figure 3.5-3c).
~ There are two viable options for the placement of the third layer. One is to position each
atom in the third layer directly above an atom in the first layer. This arrangement is'shown
in Figure 3.5-4b and corresponds to the HCP structure. The other option is to place the
atoms in the third layer above the “holes” in the first layer that were not covered by atoms
‘in the second layer. This arrangement, shown in Figure 3.5—4a, corresponds to the FCC
structure, Thus, the distinction between HCP and FCC is in the placement of the third
layer of close-packed atoms.
If we refer to any close-packed layer with its atoms in the positions associated with the
first layer as an “A” layer, those layers with atoms positioned as in the second layer as “B”

o 1ayel's, and those with atoms positioned above the holes in both the A and B layers as “C”

layers, then the stacking sequence in HCP is ABABAB . . . and the sequence in FCC is
ABCABC . . . (see Figure 3.5-4).
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FIGURE 3.5-3 The stacking sequence of close-packed planes as viewed along (a) the [1 T 1] direction in an FCC
unit cell and (b) the c direction in an HCP unit cell. {¢) The atoms in the second layer lie in wells directly above the
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. 3,6 INTERSTITIAL POSITIONS AND SIZES

The 3-D lattices that we have described are not completely filled with atoms (APF < 1.0
for all crystals). There are spaces around all and between some of the atoms. In this
section we will investigate the size and position of the largest holes, or interstices, in the
FCC, BCC, and HCP systems. We will then discuss crystals that contain more than one
m. As a rule, small atoms are positioned in the larger interstices. In ionic

type of ato
structures, positioning of the smaller ions depends on the stoichiometry of the compound,

the charge on the ions, and the radius ratio.

3.6.1 Interstices in the FCC Structure

The largest hole in an FCC structure is at the center of the unit cell, as shown in
Figure 3.6—1a. It is at this position that the largest sphere can be fitted into the cubic
close-packed structure. The CN of an atom placed in this position is 6, since the atoms
in the center of each face are equidistant. The polyhedron that connects the equidistant
atoms can be used to describe the geometry of the interstitial site. In this case it has eight
sides. Hence, this type of interstice is called an octahedral site. Equivalent sites are
located at the center of each edge. These edge sites are shared among four unit cells.
Hence there are four [ie., (12 X 1/4) + (1 X 1)] octahedral sites per FCC unit cell.
The size of the octahedral holes is defined as the radius of the largest sphere that can
be placed within it. It can be calculated from the geometry of the structure. As shown in
Figure 3.6—1, the distance from the center of the top face to the center of the bottom face
is equal to the lattice parameter d, for the unit cell. If « is the radius of the hole, then
ay = 2r + 2«. Using the a-r relationship in FCC [a(FCC) = 4r/ \/?_,] and solving for
the radius ratio yields x/r = 0.414. Thus, an atom roughly 40% of the size of the host
atoms can “fit” into an octahedral interstitial position in the FCC structure.
" The FCC structure also contains tetrahedral sites, as shown in Figure 3.6—1b. These
sites are bounded by four atoms and lie completely within the cell in the 1/4, m/4, n/4
positions, where I, m, and n are 1 or 3. Each cell contains eight of these 1/4, 1/4,
_1/4—type tetrahedral sites. Using arguments similar to those employed above, it can be
hown that the x/r ratio for tetrahedral sites is 0.225. This means that atoms up to ~20%
f the size of the host atoms can “fit” in the tetrahedral interstitial positions in FCC
structures. Note the similarities between the K /r ratios for sizing interstitial holes in the
_FCC structure and the critical #/R ratios for determining CNs in ionic compounds (see
Table 2.6—1). This should not be surprising, since the relevant geometries are identical.
. In summary, while there are twice as many tetrahedral sites as there are octahedral sites,
ACh tetrahedral site is only about half the diameter of an octahedral site in the FCC

tructure.
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EXAMPLE 3.6-1
l?etermine whether it is possible for a hydrogen atom to fit into either a tetrabedral or an octahedral
site in FCC aluminum.

__ Solution
‘ ‘i:i.ng Appendix C, we find that #(H) = 0.046 nm and r(Al) = 0.143 nm. The important radius
ratio is r(H) /r(Al) = 0.046/0.143 = 0.32. Comparing this value with the critical «/r ratios in the

only into the octahedral interstitial positions in AL

----------------------------------------------------------------------------------------

text (i.e., k/r < 0.414 for octahedral sites and x/r = 0.225 for tetrahedral sites) shows that H can<
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3.6.2 Interstices in the BCC Structure

Like the FCC structure, the BCC structure also contains both octahedral and tetrahedral
sites. As shown in Figure 3.6—Ic, the octahedral sites are located in the center of each face
and the center of each edge, giving a total of six sites per unit cell. The diameter of the
octahedral site cannot be determined by examination of the face diagonal. The BCC
structure is not a close-packed structure, and the atoms that surround the interstitial site
are not all equidistant neighbors. When the largest possible atom occupies the octahedral
position, the atoms touch only along (I 0 0) as measured from one central atom to
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Chapter 3 Crystal Structures

another. Hence, ao = 2r + 2«. Using the ay-r relationship in BCC [a(BCC) = 4r/V/3]
and solving for the radius ratio yields «/r = 0.155.

The tetrahedral sites in BCC structures are located in the 1/4, 1/2, 0—type positions,
which are on the {1 0 0} faces, as shown in Figure 3.6—1d. There are 24 such sites, each
shared with another cell, for a total of 12 tetrahedral sites per unit cell. The diameter of
the largest atom that just fits into the tetrahedral site can be calculated by considering
atomic packing along (2 1 0) and is found to be x/r = 0.291. Note that the tetrahedral
sites in the BCC structure are more numerous and larger than the octahedral sites.

EXAMPLE 3.6-2
Determine whether it is possible for a carbonatom to dissolve in BCC iron.

Solution

Using Appendix C, we find: r(C) = 0.077 am and r(Fe) = 0.124 nm. Hence, r(C)/r(Fe) =
0.077/0.124 = 0.62. Comparing this with the critical «/r ratios given in the previous section
(i/r = 0.155 for octahedral sites and k/r = 0.291 for tetrahedral sites), we find that C does not
fit easily into either type of interstitial position in BCC Fe. We will learn later that this is one of
the key reasons for the high strength of steel alloys, which are composed of a mixture of small
amounts of C in Fe. In addition, this “misfit” limits the solubility of C in the Fe crystal structure.

-------------------------------------------------------------------------------------------------------------------------------------

3.6.3 Interstices in the HCP Structure

As anticipated, the HCP structure also contains both octahedral and tetrahedral inter-
stices. The positions of the interstices are shown in Figure 3.6—1e and f. There are
6 octahedral sites per “big” cell or 2 sites per unit cell and 12 tetrahedral sites per big
cell or 4 per unit cell. Since both FCC and HCP are close-packed crystal structures,
the relative sizes of the interstitial sites are the same in these two types of crystals.
Table 3.6— 1 summarizes the number and size of the tetrahedral and octahedral interstitial
sites in the BCC, FCC, and HCP structures.

TABLE 3.6-1 The size and number of tetrahedral and octahedral interstitial sites in the BCC, FCC, and HCP crystal
structures. The sizes of the interstitial sites are given in terms of the radius ratio (/1) where x is
the radius of the largest atom that can “fit” into the interstitial position and 7 is the radius of the
host atoms. The number of interstitial sites is given in terms of both the number of sites per cell

and, in parentheses, the number of sites per host atom.

, - - . Mumber of fetrahedral Number of octaliedyal
. Sizeof  Sizeof sitesper . sitesper

‘ tetrahiedral wniteell  ©  unitcell

tmfe':‘  sites - . (per host atom) (per host atom)

3.7 CRYSTALS WITH MULTIPLE ATOMS PER LATTICE SITE

In this section we expand our list of crystal structures to include systems with a basis of
two or more atoms, that is, with multiple atoms per lattice point. In some cases the atoms
are the same; in other cases the atoms are different. Examples of a 2-D lattice with a basis
containing multiple characters can be found in the prints by the artist M. C. Escher shown
in Figure 3.7-1.
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FIGURE 3.7-1

Examples of the work of
artist M. C. Escher showing
a two-dimensional pattern
with a complex basis in-

volving more than one char-

acter. (Source: © 1994
M. C. Escher/Cordon Art,
Baarn, Holland. All rights
reserved.)
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3.7.% Crystals with Two Atoms per Lattice Site

The Cesium Chloride Structure

Cesium chloride is an ionic solid. Its crystal structure, shown in Figure 3.7-2a, is
composed of a simple cubic lattice with two ions, one of each type, per lattice position.
One of the ions is centered on each lattice point, and the other is positioned at a distance
of a;V/3/2 in the [1 1 T] direction with respect to each lattice position. This structure is
not a BCC structure, because there are two different atoms present. In this case the center
position is not equivalent to a corner position. As shown in Figure 3.7-2b, the CsCl
structure can be envisioned as a pair of interwoven SC lattices. This model clearly
demonstrates the symmetry of the CsCl structure. Either atom can reside in cube corners
with the other atom at the cube center.

The coordination number for each ion in the CsCl structure is 8, and there is one ion
of each type per unit cell. The lattice constant can be readily determined by noting that
ions touch along the body diagonal. Thus,

V3 2(r + R
ﬁ(—)*-—“ =r + R or (IO(CSCI) - ‘("‘—:—) (3.7-—1)
2 V3
@ &
B
(e .
W\ \ 5
I | 2N
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//‘ ————— T //b _____ Rz

(a} (b}

FIGURE 3.7-2  The CsCl crystal structure: {a) A simple cubic lattice with two different atoms per lattice point;
{b} Alternatively, the structure can be viswed as a pair of interwoven simple cubic lattices.
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Chapter 3  Crystal Structures

Although there are other ionic solids with the CsCl structure, such as CsBr and Csl,
the structure also occurs in other types of materials. For example, when equal numbers
of copper and zinc atoms are mixed, they can crystallize under certain conditions into the

CsCl structure.

.................................................................................................................................

EXAMPLE 3.7-1
Calculate the theoretical density of CsCL

Solution

From Appendix B we find that the atomic weights of Cs and Cl are 132.9 g/mol and 35.45 g/mol.
From Appendix C, r(Cs*) = 0.167 nm and R(C1") = 0.181 nm. Using the same procedure as in
Example 3.3—1, we find:

He

Vie

Density =

with
(Number of ions Mass

M = . X
H Unit cell Jon
’ For CsCl, -
; = (1 c3+>< At. wt. Cs N <1 cr- At wt. Cl >
. e Cell /\ Avogadro’s number Cell / \ Avogadro’s number
| 1 mol < 1 mol >

= (132.9 g/mol C + (35.45 g/mol Cl1
: (132.9 g/mo S)<6.023 0% o) 8545 g/mol OO\ £ 0% atoms

= 2.80 X 107?? g/(unit cell)

Using Equation 3.7~1:

ool {2[r(Cs+) + R(cr)]}3 _ [2(1.67 + 1.81) X 1078 cm]3
ue 0 \/é- \/g

6.49 % 1072 cm®/(unit cell)

Therefore,

2.80 X 10722 g/eell
6.49 X 1072 cm’/cell

p(CsCl) = = 431 glem?

The experimental density of CsCl is 3.99 glem?®,

..............................................................

M~

The Sodium Chioride Structure

As shown in Figure 3.7-3a, the NaCl structure is composed of an FCC arrangement of
anions complemented with cations located in all of the octahedral positions. A more
precise definition of the NaCl structure is an FCC lattice with a basis of two different
atoms—one ion type is located on the FCC positions and the other ion type is positioned
at a distance of a,/2 in the [1 0 0] direction with respect to each lattice position. Figure
3.7-3b shows that the NaCl structure can be envisioned as a pair of interwoven FCC
lattices.

There are four ions of each type in the NaCl structure, and the ao-r relationship
is ay(NaCl) = 2(r + R). Ions touch along the cube edge. Other compounds with this
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FCC unit cell FCC unit cell
with Na* located with Cl- located
at FCC positions at FCC positions
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FIGURE 3.7-3  The NaCl crystal structure: {a) An FCC lattice with two different atoms per lattice point; {b) Alternatively, the
structure can be viewed as a pair of interwoven FCC lattices.

structure are all ceramics and include a number of metal oxides (MgO, Ca0, SrO, FeO,
BaO, MnO, NiO) and alkali halides (KCD).

The Diamond Cubic Structure

One of the crystalline forms of pure carbon is diamond. In the diamond cubic crystal
structure, shown in Figure 3.7-4a, the atoms are arranged on an FCC lattice with
additional atoms in half of the tetrahedral or 1/4, 1/4, 1/4—type positions. Alternatively,
this structure can be described as having two atoms per site— one centered on each FCC
position and the other located at a distance of @, V/3/4 in the [1 1 1]direction with respect
to each lattice position. Note that there are eight atoms per unit cell.

Why would carbon atoms assume this structure rather than any of those previously
mentioned? The answer is that it must represent a lower-energy arrangement than any of
the other structures. But why is this so? As discussed in Chapter 2, the covalent bonding
in diamond requires that CN = 4 and that the C-C-C bond angle be 109.5°. While none

FIGURE 3.7-4  (a) The diamond cubic crystal structure is composed of an FCC lattice with two atoms per lattice
point. One atom from each pair is centered on each lattice point, and the second atom is positioned at (ao\/§/4)
[* 1 7. {b) The zinc blende crystal structure is similar to the diamond cubic structure, except that the basis is com-
posed of two different atoms.
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Chapter 3 Crystal Structures

of the previous structures satisfy these requirements, a examination of Figure 3.7-4a
shows that the diamond cubic crystal structure fulfills the bonding criteria. The ae-r
relationship is @, (diamond cubic) = 8r/ /3. Atoms touch along 1/4 of the body diagonal.
Carbon is not the only material to have this structure. Silicon and germanium, both
covalent semiconductors, crystallize in the diamond cubic structure.

The Zinc Blende Structure

As shown in Figure 3.7—-4b, the zinc blende structure is similar to the diamond cubic
structure. Atoms are located in the same positions, but here the two atoms per lattice site
are different. The structure is named after an ionic compound ZnS, although a number
of covalently bonded semiconductors such as GaAs and CdTe have this structure.

Why are only half of the tetrahedral sites filled? Why not fill all eight of the sites? The
answers to these questions are related to the stoichiometry of the compound. The chemical
formula implies that there is an equal number of each atom type in the compound. Since
there are four FCC sites per cell and eight tetrahedral sites per cell, the one-to-one atom
ratio demands that half the tetrahedral sites be empty. The zinc blende structure has a
coordination number of 4, there are four atoms of each type per cell, and the ag-r
relationship is ao(zinc blende) = 4(r + R)/ /3. Atoms are in contact along 1/4 of a body

diagonal.

We have examined three crystal structures that an ionic material with equal numbers of
anions and metal cations, that is, compounds with MX stoichiometry, might assume. How
does the material “choose” its crystal structure? The key concepts are the /R ratio and
stoichiometry. For example, consider MgO. It might crystallize into the NaCl structure,
the CsCl structure, or the zinc blende structure. The ratio -(Mg**) /R(O*) is 0.59. Using
the stability criteria summarized in Table 2.6—1, one can determine that the most stable
coordination number is 6. Consequently, MgO forms crystals of the NaCl type.

Erzuase WeRENRERTTIERRNEESTIFASARARRFEIFNREIANNAANANN GETEITEE KEErasEESNETIIIRSTINAENAECIANETEGAN RS I N EEANEEREARATTCEIINENINIDEEOLIORNKDNN

EXAMPLE 3.7-2
Predict the most likely crystal for (a) CsI and (b) GaAs.

Solution
We must first predict the CNs for each compound and then use these values to predict the crystal
structure, noting that CN(zinc blende) = 4, CN(NaCl) =6, and CN(CsCl) = 8. We begin by
gletermining the primary bond type in each compound. Using electronegativity values in Appendix
B, Csl is ionic and GaAs is covalent.
a. Since Csl is ionic, the ratio r(Cs*)/R(I™) = (0.167 nm)/(0.220 nm) =~ 0.76, with Table
2.6—1, shows that CN(Cs*) = CN(I") = 8. Thus, we predict Csl has the CsCl structure.
b. Since GaAs is covalent, the CNs are determined by the 8 — N,, rule. In this compound,
and many similar compounds, it is the average number of valence electrons that deter-
mines the structure. Ga has three valence clectrons and As has five valence electrons, so
the average number of valence electrons is four. GaAs has the zinc blende crystal struc-
ture.

For these two compounds the observed crystal structures are in agreement with predictions‘l

.......
---------------------------------------------------------------------------------------------

!The simplified approach presented here, however, does not always yield the correct result. Recall that
#.0ur model assumes the atoms to be rigid spheres. This assumption is not always valid. The interested reader
should compare the predicted and observed crystal structures for the compound CaO.
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FIGURE 3.7-5

The fluorite crystal struc-
ture. The structure is com-
posed of an FCC lattice
with three atoms per lattice
point. The M ions are lo-
cated at the FCC positions
and the X ions occupy all
of the tetrahedral intersti-
tial positions.

FIGURE 3.7-6

The crystal structure of
crystobalite is an FCC lat-
tice with six atoms per lat-
tice site. It can be envi-
sioned as being composed
of an (Si0,)* tetrahe-
dron of atoms centered on
each of the diamond cubic
positions.

Part{  Fundamentals

3.7.2 Crystals with Three Atoms per Latlice Site

Compounds with a two-to-one ratio of atoms, such as CaF,, SiO,, and Li,0, generally
have crystal structures with a basis of three atoms. We will see in the following discussion
that the complexity of the crystal structure tends to increase with the complexity of the
basis.

The Fluorite Structure

Calcium fluoride (CaF,) and a number of other materials with the MX, formula crystallize
into a structure in which the M ions are located in the FCC positions and the X ions fill
all the tetrahedral sites. The structure is shown in Figure 3.7-5. The stoichiometry
dictates that there be double the number of X atoms as M atoms per unit cell. The M ions
have CN(M) = 8 and the X ions have CN(X) = 4. Other compounds with this structure
include UQ,, ThO,, and ZrO,. '
Several compounds with the formula M,X, including Li,O, Na,0, and K,O, crystal-
lize in the antifluorite structure. This structure is simply the inverse of the fluorite structure
with the X ions at the FCC positions and the M ions filling all of the tetrahedral positions.

The Crystobalite Structure

While SiO, (silica) has three atoms per lattice site, it is much easier to visualize the
structure of crystobalite, an important crystalline form of silica, in a different fashion. The
short-range order of any compound of Si and O requires that each Si atom form single
covalent bonds with its four nearest neighbor O atoms. In turn, each O atom is covalently
bonded to two Si atoms. Hence, as shown in Figure 3.7-6a, the basic building block for
all Si-O compounds is the negatively charged (Si0,)* tetrahedron. The crystobalite
crystal structure, shown in Figure 3.7-6b, can be envisioned as the diamond cubic
structure with an (Si0,)*" tetrahedron positioned on each lattice site. Since each O atom
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Chapter 3 Crystal Structures

is shared by two tetrahedra, each tetrahedron contains one Si and two O atoms, or one
$i0, group. Thus, crystobalite has an FCC lattice with six atoms, or two tetrahedra, per

lattice site.

3.7.3 Other Crystal Structures

The structures presented to this point are some of the simplest crystal structures found.
They serve to illustrate the essential salient concepts associated with crystallography, yet
they represent the structures of a number of important materials. You will note that most
metals are either cubic or hexagonal. Most nonmetals are neither cubic nor hexagonal. In
the following discussion we will add to our list of important crystal structures. The basic
concepts remain unchanged with these structures; however, the structures are more

complex.

The Perovskite Structure

Calcium titanate (CaTiO;) crystallizes with the perovskite structure, as shown in Fig-
ure 3.7-7a. The Ca®" ions are located at the cube corners, the O~ ions are at the center
of each face, and a Ti*" ion resides at the center of the cube. Thus, there are a total of five
i(’)jnvs in the unit cell. As mentioned previously, the choice of an origin for the coordinate
axis is arbitrary. It is equally valid to draw the perovskite unit cell with a Ti** ion located
at the origin. (See Figure 3.7-7b.) Note that when the origin coincides with one of the
Ti** ions, the O®~ ions are at the edge centers rather than the face centers.

Similar materials, such as BaTli0O,, have similar structures. In the case of barium
titanate, however, the structure is simple tetragonal rather than cubic. What this means
is'that the lengths of the edges of the unit cell are not equal. As shown in Figure 3.7-8,
ifi the case of BaTiO, the difference is small: ¢ = b = 0.398 nm, ¢ = 0.403 nm. Careful
inspection of this figure shows that the central Ti** jon does not lie in the same plane as
= the four oxygen atoms in the side faces of the tetragonal unit cell. This charge displacement
gives BaTiO; some important electrical properties. The shift in the relative positions of
~the central Ti cation and the surrounding O anions results in the formation of a local
electric dipole. The strength of the dipole, which is related to the magnitude of the atomic
displacement, can be altered by either an applied force or an electric field. The result,
~which will be discussed in more detail in Chapter 11, is that a barium titanate crystal can
be used as a transducer, to convert electrical voltages into mechanical energy and vice
versa. This leads to applications in telephone receivers and phonograph cartridges.

(a)

FIGURE 3.7-7 The perovskite unit cell for CaTiO, drawn (a) with the origin coinciding with a Ca?* ion, and (b) with
the origin coinciding with a Ti** ion.
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FIGURE 3.7-9
Crystalline polyethylene s
composed of polyethylene
chains arranged in an or-
thorhombic unit cell.
(Adapted from C. W. Bumn,
Chemical Crystallography,
1945, by permission of Ox-
ford University Press.)
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yk—— 398 nm —»|

Offset between top
plane of Ba* ions and
top center 02~ jon

Offset between central
Ti%* ions and
midplane of 02~ jon

(a) (b)
FIGURE 3.7-8 The tetragonal unit cell of BaTiO; shown {a) in 3-D, and {b} in 2-D.

The Structure of Methane

Methane (CH,) is a gas at room temperature. Hence, it is not a material that is often used
in solid form. The chief purpose of including it here is to show that the structures of
low—molecular-weight organic crystals are similar in all respects to those of inorganic
crystals. Below —183°C, methane crystallizes into an FCC structure. On each lattice site
are placed five atoms. Similar to the case of crystobalite, it is perhaps easiest to envision
the structure as having a carbon atom tetrahedrally coordinated by hydrogen atoms at each
lattice site.

The Structure of Polyethylene

The unit cells of macromolecules (polymers) are more complex than those of metals, ionic
compounds, or small-molecule organic crystals. In general, polymers crystallize only
partially or not at all, and it is the linear ones that may be semicrystalline. The discussion
below focuses on only those parts of the polymer that have been laid down to form
crystals. We will revisit the subject of polymer crystallization in Chapter 6.

%7@—@ }Zg—a 373—@
@_@i—% %_;/ @\ @__@—?

\' =) \«\ G Q\’ 0.255 nm
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3.8 LIOUID CRYSTALS

As discussed in the introduction to this
only. The term liquid crystal is given to
The extent of the long-range or

her with covalent bonds. Because of its simpl

in the scheme of polymers, crystallizes readily.
llel with one another in order to
d formation. The structure of a polyethylene crystal is shown in

s orthorhombic, meaning that no two edges have the same
It is customary to use the ¢ direction as the chain direction.

Unit-cell dimensions for polymers are typically
plex ionic crystals also have large cell parameters.

Chapter 3 Crystal Structures

s chapter, polyethylene is a chain of CH, groups linked

e symmetrical structure, polyethylene,
In crystals, segments of the polymer
maximize intermolecular interactions,

larger than those for metals; however,

chapter, the order in most liquids is short range
fluids that show some degree of long-range order.

der in these materials is intermediate between that of a

h SRO only. The order in one type of liquid crystals
on of molecules, giving regions of near parallel align-
Figure 3.8-1. In another type of liquid crystal the
his latter class of liquid crystals has found household

lays (i.e., the illuminated numbers in digital clocks and
other electronic devices).
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crystalline solid and a liquid wit
consists essentially of an associati
ment of molecules as shown in
molecules twist cooperatively. T
applications as liquid crystal disp
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(a)
FIGURE 3.8-1  Schematic illustrations of the structure of some liquid crystals: {a) chain ends are unaligned; {b) chain

ends are aligned.

3.9 SINGLE CRYSTALS AND POLYCRYSTALLINE MATERIALS

er of crystalline materials in this chapter.

~ We have been concerned exclusively with the ord
te as perfect as you may have-been led

TIndeed, many materials are crystalline but not qui
to believe thus far. Virtually all metals form crystalline structures under normal condi-

:ft;is)ns of cooling from the molten liquid; however, an entire part cast from the melt is rarely
a single crystal. Rather, the casting is made up of a number of crystals with identical
nguctures but different orientations. Most metals form polycrystalline structures, as
§§10Wn in Figure 3.9~1. The grains are small crystals that are typically on the order of

~50 wm across, but they may be up to a centimeter in diameter. The grain boundaries
re internal surfaces of finite thickness where crystals of different orientations meet. Itis .
ossible that you have seen grains and grain boundaries on old brass doorknobs that have )

been polished and etched with perspiration through years of use.
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Chapter 4  Point Defects and Diffusion

In summary, we have identified two possible types of point defects in crystals: vacan-
cies and interstitials. It has been demonstrated that not only are such defects possible but
their existence is thermodynamically necessary. Point defects play a major role in deter-
mining several properties of crystals, and their effects will be discussed throughout this
and subsequent chapters.

4.2.2 Vacancies and Interstitials in lonic Crystals

Just as vacancies and interstitials occur in nonionic crystals, similar point defects are also
found in ionic solids. However, an extremely important difference between ionic and
nonionic crystals arises with respect to the generation of vacancies. In ionic crystals,
isolated single vacancies do not occur, since the removal of a single ion would result in
an electrical charge imbalance in the crystal. Instead, vacancies can occur only in small
groups with the cation:anion vacancy ratio such that the crystal as a whole remains
electrically neutral. These electrically neutral cation-anion vacancy clusters are called
Schottky defects. Examples of Schottky defects in NaCl and MgCl, are shown in Fig-
ure 4.2—2. In NaCl, in which there are equal numbers of cations and anions, electrical
neutrality requires equal numbers of cation and anion vacancies, and the Schottky defect
is composed of a single anion/cation vacancy pair. In contrast, in MgCl,, for every Mg>*
vacancy there are two Cl~ vacancies to maintain electroneutrality.

The Schottky defect is not the only point-defect cluster that can maintain charge
neutrality. Another possibility involves the formation of a vacancy/interstitial pair. These
small point-defect clusters are known as Frenkel defects and are shown schematically in
Figure 4.2-3 for the compound AgCl. Generally speaking, Frenkel defects involving
cation interstitials are far more common than those involving anion interstitials, since
most interstices are too small to accommodate the larger ions, usually anions.

The relative concentrations of the various point defects are determined by the energies
of defect formation and the requirement of electroneutrality. Using thermodynamic

Schottky defect Schottky defect
(1 Ve-and 1 Vg (1 Vyg2+ and 2 Vip)
(a) (b}
FIGURE 4.2-2 Schottky defects in (a) NaCl and (h) MgCl,. The vacancies are created so that overall charge neu-
trality is maintained. The figure shows the vacancies associated (close together); however, the cation and anion vacan-
ties need not be focated spatially close to one another.
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4.3 IMPURITIES
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FIGURE4.2-3  Frenkel defects in AgCL. The defect consists of vacancy/interstitial pairs. Frenkel defects involving cations
(a} are more common than those involving anions (b}, since cations are usually smaller.

reasoning similar to that used to develop the expression for the vacancy concentration in
nonionic solids, the concentrations of vacancies and interstitials in ionic solids can be
estimated.

For Frenkel defects:

N, Oni N;
AN G T NS 4.2-3
N, e")( 2RT> Ny 429

where C, and C; are respectively the concentrations of vacancies and interstitials and Oni

is the energy required to form a vacancy and an interstitial. The factor of 2 in the

denominator of the exponential occurs because two defects are created in the process.
For Schottky defects in an MX compound:

/v- % | A/ an ~
C: cat T S = exp( - %}{) = # = ('r.‘.m (4'2""43)
. . 2 pe

where C, ., and C,,, are respectively the concentrations of cation and anion vacancies
and Oy, is the energy required to form a cation/anion vacancy pair. For Schottky defects
in M, X, compounds:

. Qe

PCrca = (np) exp| — ——"—1 = nC, (4.2-4D)
et } (n* 4+ pHRT "

where Q.. is the energy required to form a cluster of n cation vacancies and p anion

vacancies.

Impurities exist at some level in practically all materials. Often they enter the host
material during processing and confer undesirable properties. On the other hand, they
may be intentionally added either to enhance properties or to produce new desirable
effects. In the latter case they are referred to as alloying elements in metals, as additives
in polymers and ceramics, or as dopants in semiconductors. Examples of undesirable
impurities include sulfur in steels and moisture in nylon fibers. In both cases the impurities
degrade the mechanical properties of the host material. In contrast, the addition of
phosphorus to silicon to confer desirable electrical (semiconducting) characteristics, cat-
bon to iron to increase strength, methyl acrylate to polyacrylonitrile to give a dyeable
polymer, and metallic ions to window glass to produce desirable colors are examples of
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Chapter 4  Point Defects and Diffusion 117

beneficial impurity additions. In this section we describe the different types of impurities,
demonstrate the basis for their existence, and discuss their practical effects.

4.3.1 Impurities in Crystals

Just as vacancies and interstitials in pure materials lower the free energy, in many cases
impurities dissolved in a material also lower the total free energy. While the internal
energy is generally increased as a result of adding impurity atoms, the entropy is also
increased, and at any temperature there will be a certain number of impurities for which
the free energy is a minimum. The equilibrium concentration of impurity atoms at any
ns temperature is determined by a trade-off between increases in the entropy and increases
in the internal energy.
Atoms of the primary atomic species are called solvent atoms, while the impurities are
usually referred to as solute atoms. In crystalline solids, impurity atoms can be either
in ' present in the spaces between the solvent atoms or substituted for the solvent atoms. When
oe . the impurities lie in the spaces between the solvent atoms, they are called interstitials, and
"' the mixture formed by the two atomic species is called an interstitial solid solution.
When impurities substitute for the solvent atoms, they are called substitutional atoms, ‘
and the mixture of the two species is called a substitutional solid solution. Examples of

3) . interstitial and substitutional solid solutions are shown in Figures 4.3-1 and 4.3-2,
5 respectively.
i ' There are certain requirements for the formation of either interstitial or substitutional
he solid solutions. For example, it is possible for atoms of the host species to exist in
gs. "? interstitial positions as a result of high-energy impacts, such as those received during
| irradiation. However, this is an unusual case: interstitial solid solutions normally form
only when the interstitial atoms are significantly smaller than the solvent atoms and are [
|
la) .
ies
cts .
= Solvent
‘b) = Interstitial (solute)
ion
FIGURE 4.3-1 Interstitial solid solution. The solute atom is positioned in the void spaces between solvent atoms,
causing strain in the lattice.
108t
hey
ible
ves = Solvent atom
ible
ties = Solute atom
1 of
sar-
ible FIGURE4.3-2 Substitutional solid solution. The solute and solvent atoms must have sizes {radii) within 15% and must
s of ] have similar bond characteristics.
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The reciprocal lattice plays a fundamental role in most analytic studies of periodic
structures. One is led to it from such diverse avenues as the theory of crystal diffraction,
the abstract study of functions with the periodicity of a Bravais lattice, or the question
of what can be salvaged of the law of momentum conservation when the full trans-
lational symmetry of free space is reduced to that of a periodic potential. In this brief
chapter we shall describe some important elementary features of the reciprocal lattice
from a general point of view not tied to any particular application.

DEFINITION OF RECIPROCAL LATTICE

Consider 4 set of points R constituting a Bravais lattice, and a plane wave, e*"". For
general k, such a plane“wave will not, of course, have the periodicity of the Bravais
lattice, but for certain special choices of wave vector it will. The set of all wave vectors
K that yield plane foaves with the periodicity of a given Bravais lattice is known as its
reciprocal lattice. Analytically, K belongs to the reciprocal lattice of a Bravais lattice
of points R, provided that the relation

eiK-(r+R) — eiK'r (5.1)

holds for any r, and for all R in the Bravais lattice. Factoring out e™ " we can charac-
terize the reciprocal lattice as the set Q;LW ve vectors K satisfying

)
for all R in the Bravais lattice.

Note that a reciprocal lattice is defined with reference to a particular Bravais
lattice. The Bravais lattice that determines a given reciprocal lattice is often referred
to as the direct lattice, when viewed in relation to its reciprocal. Note also that
although one could define a set of vectors K satisfying (5.2) for an arbitrary set of
vectors R, such a set of K is called a reciprocal lattice only if the set of vectors R is

a Bravais lattice.!

THE RECIPROCAL LATTICE IS A BRAVAIS LATTICE

That the reciprocal lattice is itself a Bravais lattice follows most simply from the
definition of a Bravais lattice given in footnote 7 of Chapter 4, along with the fact
that if K; and K, satisfy (5.2), so, obviously, will their sum and difference.

It is worth considering a more clumsy proof of this fact, which provides an explicit
algorithm for constructing the reciprocal lattice. Let a;, a,, and a3 be a set of primitive
vectors for the direct lattice. Then the reciprocal lattice can be generated by the three

primitive vectors
a4, X a

- g b, = 2m—2 3 :
¢ Cag ¢ a; X a;
= L SR R 5.3
o b, =2m a; - (a, x as) (5-3)

a, x a,

by = 27—,
® nal-(azxa3)

' In particular, in working with a lattice with a basis one uses the reciprocal lattice determined by
the underlying Bravais. lattice, rather than a set of K satisfying (5.2) for vectors R describing both the
Bravais lattice and the basis points.
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‘perigdic To verify that (5.3) gives a set of primitive vectors for the reciprocal lattice, one
firaction, first notes that the b; satisfy?

question b a = 275 5.4
ull trans- \ i TL0ij>. 5.4
this brief where J;; is the Kronecker delta symbol:

sal lattice

51']:0, l?éj,

5,'1' = 1, 1 = ] (5'5)
- Now any vector k can be written as a linear combination® of the b;:
eik'r' For k = ]€1b1 + kzbz + k3b3. (5.6)
e Bravais If R is any direct lattice vector, the% \&1 L .Z é
ve vectors . p)
wn as its R = nya; + nya, + njas, k:’dv_’(‘l (5.7)
-

ais lattice

where the »; are integers. It follows from (5.4) that

5.1 kR = 2nlking + kong + ksns). (5.8)
h For e® R to be unity for all R (Eq. (5.2)) k - R must be 2x times an integer for any
N charac- choices of the integers n;. This requires the coefficients k; to be integers. Thus the
: condition (5.2) that K be a reciprocal lattice vector is satisfied by just those vectors
(5.2) that are linear combinations (5.6) of the b; with integral coefficients. Thus (compare
Eq. (4.1)) the reciprocal lattice is a Bravais lattice and the b; can be taken as primitive
r Bravais vectors.
n referred
z:lrlsosetth 2tf THE RECIPRQCAL OF THE RECIPROCAL LATTICE
ctors R is Since the reciprocal lattice is itself a Bravais lattice, one can construct its reciprocal
lattice. This turns out to be nothing but the original direct lattice.
One way to prove this is by constructing ¢;, ¢,, and ¢3 out of the b; according to
the same formula (5.3) by which the b; were constructed from the a;. It then follows
from simple vector identities (Problem 1) that ¢; = a;,i = 1,2, 3.
hfrtc;lm fthi A simpler proof follows from the observation that according to the basic definition
e fac

(5.2), the reciprocal of the reciprocal lattice is the set of all vectors G satisfying
ec k=1 5.9)

n explicit

[primitive for all K in the reciprocal lattice. Since any direct lattice vector R has this property
7 the three (again by (5.2)), all direct lattice vectors are in the lattice reciprocal to the reciprocal
lattice. Furthermore, no other vectors can be, for a vector not in the direct lattice has
. the form r = x;a; + x,a, + x3a; with at least one nonintegral x;. For that value
of i, e®'T = ¢*"~ % 1, and condition (5.9) is violated for the reciprocal lattice vector

(5'3) K - bi.

2 When i # j, Eq. (5.4) follows because the cross product of two vectors is normal to both. When
i = j, it follows because of the vector identity .

a;*(a; X a3) = a,* (a3 x a;) = az *(a; x ay).

stermined by
ing both the

3 This is true for any three vectors not all in one plane. It is easy to verify that the b; are not all in a
plane as long as the a; are not.
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IMPORTANT EXAMPLES

The simple cubic Bravais lattice, with cubic primitive cell of side a, has as its reciprocal
a simple cubic lattice with cubic primitive cell of side 2n/a. This can be seen, for
example, from the construction (5.3), for if

a, =a%, a, =4y, a3 =dy, o pTHu RIHELE (5,10)
then ?
2 2 2
by=""% by="§ by=""2 5.11)
a, a, a

The face-centered cubic Bravais lattice with conventional cubic cell of side a has
as its reciprocal a body-centered cubic lattice with conventional cubic cell of side
4m/a. This can be seen by applying the construction (5.3) to the fcc primitive vectors
{4.5). The result is

4 1 N 47 1 4r 1
1—75(?+Z“X), bz—7§(i+i—?)a ba—-a‘z

This has precisely the form of the bee primitive vectors (4.4), provided that the side
of the cubic cell is taken to be 4n/a.

The body-centered cubic lattice with conventional cubic cell of side a has as its
reciprocal a face-centered cubic lattice with conventional cubic cell of side 4n/a. This
can again be proved from the construction (5.3), but it also follows from the above
result for the reciprocal of the fcc lattice, along with the theorem that the reciprocal
of the reciprocal is the original lattice.

It is left as an exercise for the reader to verify (Problem 2) that the reciprocal to a
simple hexagonal Bravais lattice with lattice constants ¢ and a (Figure 5.12) is another

b ®+y-—2 (612

®

(a) (b)
Figure 5.1
(a) Primitive vectors for the simple hexagonal Bravais lattice. (b) Primitive vectors for
the lattice reciprocal to that generated by the primitive vectors in (a). The ¢ and ¢* axes
are parallel. The a* axes are rotated by 30° with respect to the a axes in the plane perpen-
dicular to the ¢ or ¢* axes. The reciprocal lattice is also simple hexagonal.
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Lattice Planes 89

simple hexagonal lattice with lattice constants 2z/c and 47t/\ﬁa (Figure 5.1b), rotated
through 30° about the c-axis with respect to the direct lattice.*

VOLUME OF THE RECIPROCAL LATTICE PRIMITIVE CELL

If v is the volume?® of a primitive cell in the direct lattice, then the primitive cell of the
reciprocal lattice has a volume (2r)®/v. This is proved in Problem 1.

FIRST BRILLOUIN ZONE

The Wigner-Seitz primitive cell (page 73) of the reciprocal lattice is known as the
first Brillouin zone. As the name suggests, one also defines higher Brillouin zones,
which are primitive cells of a different type that arise in the theory of electronic levels
in a periodic potential. They are described in Chapter 9.

Although the terms “Wigner-Seitz cell” and “first Brillouin zone” refer to identical
geometrical constructions, in practice the latter term is applied only to the k-space
cell. In particular, when reference is made to the first Brillouin zone of a particular |
r-space Bravais lattice (associated with a particular crystal structure), what is always .
meant is the Wigner-Seitz cell of the associated reciprocal lattice. Thus, because the )
reciprocal of the body-centered cubic lattice is face-centered cubic, the first Brillouin '
zone of the bec lattice (Figure 5.2a) is just the fec Wigner-Seitz cell (Figure 4.16).

Conversely, the first Brillouin zone of the fec lattice (Figure 5.2b)is just the bec Wigner-
Seitz cell (Figure 4.15).

Figure 5.2
(a) The first Brillouin zone for
the body-centered cubic lattice.
(b) The first Brillouin zone for
the face-centered cubic lattice.

(b)
Fce

LATTICE PLANES

There is an intimate relation between vectors in the reciprocal lattice and planes of
points in the direct lattice. This relation is of some importance in understanding the
fundamental role the reciprocal lattice plays in the theory of diffraction, and will be
applied to that problem in the next chapter. Here we shall describe the relation in
general geometrical terms.

4

The hexagonal close-packed structure is not a Bravais lattice, and therefore the reciprocal lattice
- used in the analysis of hep solids is that of the simple hexagonal lattice (see footnote 1).
*  The primitive cell volume is independent of the choice of cell, as proved in Chapter 4.
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Given a particular Bravais lattice, a lattice plane is defined to be any plane con-
taining at least three noncollinear Bravais lattice points. Because of the translational
symmetry of the Bravais lattice, any such plane will actually contain infinitely many
lattice points, which form a two-dimensional Bravais lattice within the plane. Some
lattice planes in a simple cubic Bravais lattice are pictured in Figure 5.3.

Figure 5.3
Some lattice planes (shaded) in a simple cubic Bravais lattice; (a) and (b)
show two different ways of representing the lattice as a family of lattice planes.

By a family of lattice planes we mean a set of parallel, equally spaced lattice planes,
which together contain all the points of the three-dimensional Bravais lattice. Any
lattice plane is a member of such a family. Evidently the resolution of a Bravais lattice
into a family of lattice planes is far from unique (Figure 5.3). The reciprocal lattice
provides a very simple way to classify all possible families of lattice planes, which is
embodied in the following theorem:

For any family of lattice planes separated by a distance d, there are reciprocal
lattice vectors perpendicular to the planes, the shortest of which have a length
of 2r/d. Conversely, for any reciprocal lattice vector K, there is a family of lattice
planes normal to K and separated by a distance d, where 2n/d is the length of
the shortest reciprocal lattice vector parallel to K.

The theorem is a straightforward consequence of (a) the definition (5.2) of recip-
rocal lattice vectors as the wave vectors of plane waves that are unity at all Bravais
lattice sites and (b) the fact that a plane wave has the same value at all points lying in
a family of planes that are perpendicular to its wave vector and separated by an
integral number of wavelengths.

To prove the first part of the theorem, given a family of lattice planes, let it be a
unit vector normal to the planes. That K = 2n#i/d is a reciprocal lattice vector follows
from the fact that the plane wave e® " is constant in planes perpendicular to K and
has the same value in planes separated by 4 = 2n/K = d. Since one of the lattice
planes contains the Bravais lattice point r = 0, ¢ * must be unity for any point r in
any of the planes. Since the planes contain all Bravais lattice points, e® '™ = 1 for all
R, so that K is indeed a reciprocal lattice vector. Furthermore, K is the shortest
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reciprocal lattice vector normal to the planes, for any wave vector shorter than K
will give a plane wave with wavelength greater than 2n/K = d. Such a plane wave
cannot have the same value on all planes in the family, and therefore cannot give a
plane wave that is unity at all Bravais Jattice points.

To prove the converse of the theorem, given a reciprocal lattice vector, let K be
the shortest parallel reciprocal lattice vector. Consider the set of real space planes on
which the plane wave ¢ has the value unity. These planes (one of which contains
the pointr = 0) are perpendicular to K and separated by a distance d = 2n/K. Since
the Bravais lattice vectors R all satisfy e ® = 1 for any reciprocal lattice vector K,
they must all lie within these planes;i.e., the family of planes must contain within it
a family of lattice planes. Furthermore the spacing between the lattice planes is also
d (rather than some integral multiple of d), for if only every nth plane in the family
contained Bravais lattice points, then according to the first part of the theorem, the
vector normal to the planes of length 2n/nd, i.e., the vector K/n, would be a reciprocal
lattice vector. This would contradict our original assumption that no reciprocal
lattice vector parallel to K is shorter than K.

MILLER INDICES OF LATTICE PLANES

The correspondence between reciprocal lattice vectors and families of lattice planes
provides a convenient way to specify the orientation of a lattice plane. Quite generally
one describes the orientation of a plane by giving a vector normal to the plane. Since
we know there are reciprocal lattice vectors normal to any family of lattice planes, it
is natural to pick a reciprocal lattice vector to represent the normal. To make the
choice unique, one uses the shortest such reciprocal lattice vector. In this way one
arrives at the Miller indices of the plane:

The Miller indices of a lattice plane are the coordinates of the shortest reciprocal
lattice vector normal to that plane, with respect to a specified set of primitive recip-
rocal lattice vectors. Thus a plane with Miller indices b, k, I, is normal to the reciprocal
lattice vector hb; + kb, + b,

As so defined, the Miller indices are integers, since any reciprocal lattice vector is
a linear combination of three primitive vectors with integral coefficients, Since the
normal to the plane is specified by the shortest perpendicular reciprocal lattice vector,
the integers h, k, I can have no common factor. Note also that the Miller indices
depend on the particular choice of primitive vectors.

In simple cubic Bravais lattices the reciprocal lattice is also simple cubic and the
Miller indices are the coordinates of a vector normal to the plane in the obvious
cubic coordinate system. As a general rule, face-centered and body-centered ‘cubic
Bravais lattice are described in terms of a conventional cubic cell, ie., as simple cubic
lattices with bases. Since any lattice plane in a fcc or bec lattice is also a lattice plane
in the underlying simple cubic lattice, the same elementary cubic indexing can be
used to specify lattice planes. In practice, it is only in the description of noncubic
crystals that one must remember that the Miller indices are the coordinates of the
normal in a system given by the reciprocal lattice, rather than the direct lattice.

The Miller indices of a plane have a geometrical interpretation in the direct lattice,
which is sometimes offered as an alternative way of defining them. Because a lattice
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plane with Miller indices h, k, 1 is perpendicular to the reciprocal lattice vector K =
hby + kb, + Ibs, it will be contained in the continuous plane K - r = 4, for
suitable choice of the constant A. This plane intersects the axes determined by the
direct lattice primitive vectors a; at the points x;a,, x,a,, and x3a3 (Figure 5.4),
wherethe x; are determined by the condition that x;a; indeed satisfy the equation of
the plane: K - (x;a,) = 4. Since K - a; = 2nh, K- a, = 27k, and K - a, = 2nl, it
follows that
A A
Xy = T X2 = e = e (5.13)

Thus the intercepts with the crystal axes of a lattice plane are inversely proportional
to the Miller indices of the plane.

&> Figure 5.4

An illustration of the crystallographic definition of the Miller indices of
a lattice plane. The shaded plane can be a portion of the continuous plane
in which the points of the lattice plane lie, or any plane parallel to the
lattice plane. The Miller indices are inversely proportional to the X;.

Crystallographers put the cart before the horse, defining the Miller indices to be a
set of integers with no common factors, inversely proportional to the intercepts of
the crystal plane along the crystal axes:

1
hik:l = —1~: i: — (5.19)
X1 X3 X3

SOME CONVENTIONS FOR SPECIFYING DIRECTIONS

Lattice planes are usually specified by giving their Miller indices in parentheses:
(h, k, 1). Thus, in a cubic system, a plane with a normal (4, —2, 1) (or, from the crys-
tallographic viewpoint, a plane with intercepts (1, —2, 4) along cubic axes) is called a
(4, —2, 1) plane. The commas are eliminated without confusion by writing 7 instead
of —n, simplifying the description to (421). One must know what set of axes 18 being
used to interpret these symbols unambiguously. Simple cubic axes are invariably used
when the crystal has cubic symmetry. Some examples of planes in cubic crystals are
shown in Figure 5.5.

A similar convention is used to specify directions in the direct lattice, but to avoid
confusion with the Miller indices (directions in the reciprocal lattice) square brackets
are used instead of parentheses. Thus the body diagonal of a simple cubic lattice lies
in the [111] direction and, in general the lattice point nya; + nya, + nia; lies in
the direction [nyn,n5] from the origin.

There is also a notation specifying both a family of lattice planes and all those
other families that are equivalent to it by virtue of the symmetry of the crystal. Thus
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(100) ’ (110) (111)

Figure 5.5
Three lattice planes and their Miller indices in a simple cubic Bravais lattice.

the (100), (010), and (001) planes are all equivalent in a cubic crystal. One refers to
them collectively as the {100} planes, and in general one uses {hkl} to refer to the
(hkl) planes and all those that are equivalent to them by virtue of the crystal symmetry.
A similar convention is used with directions: the [100], [010], [001], [100], [010],
and [001] directions in a cubic crystal are referred to, collectively, as the (100>
directions. g

This concludes our general geometrical discussion of the reciprocal lattice. In

Chapter 6 we shall see an important example of the utility and the power of the
concept in the theory of the diffraction of X rays by a crystal.

PROBLEMS

1. (a) Prove that the reciprocal lattice primitive vectors defined in (5.3) satisfy

(@2m)®

by * (b, X bs) = "—%4—31 (@ X a3)’

(5.15)
(Hint: Write b, (but not b, or b;) in terms of the a,, and use the orthogonality relations (5.4).)

(b) Suppose primitive vectors are constructed from the b, in the same manner (Eq. (5.3)) as
the b; are constructed from the a;. Prove that these vectors are just the a; themselves; i.e., show that

b, x by
by - (b, x by)
(Hint: Write by in the numerator (but not b,) in terms of the a;, use the vector identity A x

B x C)=BA-C) — C(A-B), and appeal to the orthogonality relations (5.4) and the result
(5.15) above.)

(c) Prove that the volume of a Bravais lattice primitive cell is

2n a;, etc (5.16)

v=|a; " (a x a3), (5.17)

where the a; are three primitive vectors. (In conjunction with (5.15) this establishes that the volume
of the reciprocal lattice primitive cell is (2r)*/v.)

el e e
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Typical interatomic distances in a solid are on the order of an angstrom (1078 cm).
An electromagnetic probe of the microscopic structure of a solid must therefore have
a wavelength at least this short, corresponding to an energy of order

he he

4 107 %cm
Energies like this, on the order of several thousands of electron volts (kilovolts or
keV), are characteristic X-ray energies.

In this chapter we shall describe how the distribution of X rays scattered by a
rigid,! periodic? array of ions reveals the locations of the ions within that structure.
There are two equivalent ways to view the scattering of X rays by a perfect periodic
structure, due to Bragg and to von Laue. Both viewpoints are still widely used. The
von Laue approach, which exploits the reciprocal lattice, is closer to the spirit of
modern solid state physics, but the Bragg approach is still in wide use by X-ray crys-
tallographers. Both are described below, together with a proof of their equivalence.

ho = ~ 123 x 10%eV. (6.1)

BRAGG FORMULATION OF X-RAY DIFFRACTION BY A CRYSTAL

In 1913 W. H. and W. L. Bragg found that substances whose macroscopic forms
were crystalline gave remarkably characteristic patterns of reflected X-radiation,
quite unlike those produced by liquids. In crystalline materials, for certain sharply
defined wavelengths and incident directions, intense peaks of scattered radiation
(now known as Bragg peaks) were observed.

W. L. Bragg accounted for this by regarding a crystal as made out of parallel planes
of ions, spaced a distance d apart (i.c., the lattice planes described in Chapter 5). The
conditions for a sharp peak in the intensity of the scattered radiation were: (1) that
the X rays should be specularly reflected® by the ions in any one plane and (2) that the
reflected rays from successive planes should interfere constructively. Rays specularly
reflected from adjoining planes are shown in Figure 6.1. The path difference between
the two rays is just 2d sin 0, where 0 is the angle of incidence.* For the rays to interfere
constructively, this path difference must be an integral number of wavelengths, leading

to the celebrated Bragg condition:
nA = 2d sin 0. 6.2)

The integer n is known as the order of the corresponding reflection. For a beam
of X rays containing a range of different wavelengths (“white radiation”) many
different reflections are observed. Not only can one have higher-order reflections
from a given set of lattice planes, but in addition one must recognize that there are

1 Actually the ions vibrate about their ideal equilibrium sites (Chapters 21-26). This does not affect
the conclusions reached in this chapter (though in the early days of X-ray diffraction it was not clear why
such vibrations did not obliterate the pattern characteristic of a periodic structure). It turns out that
the vibrations have two main consequences (see Appendix N): (a) the intensity in the characteristic peaks
that reveal the crystal structure is diminished, but not eliminated; and (b) a much weaker continuous
background of radiation (the “diffuse background”) is produced.

2 Amorphous solids and liquids have about the same density as crystalline solids, and are therefore
also susceptible to probing with X rays. However, the discrete, sharp peaks of scattered radiation charac-
teristic of crystals are not found.

3 In specular reflection the angle of incidence equals the angle of reflection.

4 The angle of incidence in X-ray crystallography is conventionally measured from the pla
reflection rather than from the normal to that plane (as in classical optics). Note that 6 is just half the
angle of deflection of the incident beam (Figure 6.2).
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A Bragg reflection from a particular
family of lattice planes, separated by a
distance d. Incident and reflected rays are
shown for the two neighboring planes.
The path difference is 24 sin 6.
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Figure 6.2

The Bragg angle 0 is just half the total angle by which the incident
beam is deflected.

)2

I
Figure 6.3
The same portion of Bravais lattice shown

)

in Figure 6.1,-with a different resolution ‘

into lattice planes indicated. The incident

ray is the same as in Figure 6.1, but both 0‘ .
the direction (shown in the figure) and

wavelength (determined by the Bragg

condition (6.2) with o replaced by d’) of

the reflected ray are different from the

reflected ray in Figure 6.]. Reflections ‘

are possible, in general, for any of the

infinitely many ways of resolving the

lattice into planes. d

many different ways of sectioning the crystal into planes, each of which will itself
produce further reflections (see, for example, Figure 5.3 or Figure 6.3).

VON LAUE FORMULATION OF X-RAY DIFFRACTION
BY A CRYSTAL

The von Laue approach differs from the Bragg approach in that no particular sec-
tioning of the crystal into lattice planes is singled out, and no ad hoc assumption of
Specular reflection is imposed.® Instead one regards the crystal as composed of

The Bragg assumption of specular reflection is
scattered from individual jons within each lattice plan
the von Laue approaches are based
page 99) is to be expected.

, however, equivalent to the assumption that rays
¢ interfere constructively. Thus both the Bragg and
on the same physical assumptions, and their precise equivalence (see
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Figure 6.4
Hlustrating that the path difference for rays
k scattered from two points separated by d is

given by Eq. (6.3) or (6.4).

dcos®' =~d.fi

identical microscopic objects (sets of ions or atoms) placed at the sites R of a Bravais
lattice, each of which can reradiate the incident radiation in all directions. Sharp
peaks will be observed only in directions and at wavelengths for which the rays
scattered from all lattice points interfere constructively.

To find the condition for constructive interference, consider first just two scatterers,
separated by a displacement vector d (Figure 6.4). Let an X ray be incident from
very far away, along a direction #, with wavelength 4, and wave vector k = 2zf/A.
A scattered ray will be observed in a direction fi’ with wavelength® 1 and wave vector
k' = 2ni’/A, provided that the path difference between the rays scattered by each of
the two ions is an integral number of wavelengths. From Figure 6.4 it can be seen
that this path difference is just

dcos® + dcos6’ = d-(m — @) (6.3)
The condition for constructive interference is thus

d-(h — i) = mi, (6.4)

for integral m. Multiplying both sides of (6.4) by 2r/4 yields a condition on the incident
and scattered wave vectors:
d-(k — k') = 2mm, (6.5)
for integral m.
Next, we consider not just two scatterers, but an array of scatterers, at the sites of
a Bravais lattice. Since the lattice sites are displaced from one another by the Bravais
lattice vectors R, the condition that all scattered rays interfere constructively is that
condition (6.5) hold simultaneously for all values of d that are Bravais lattice vectors:

for integral m and
R-(k — k') = 2mm, all Bravais lattice (6.6)
vectors R.

This can be written in the equivalent form

el —k-R _ 1, for all Bravais lattice vectors R. 6.7)

¢ Here (and in the Bragg picture) we assume that the incident and scattered radiation has the same
wavelength. In terms of photons this means that no energy has been lost in the scattering, i.e., that the
scattering is elastic. To a good approximation the bulk of the scattered radiation is elastically scattered,
though there is much to be learned from the study of that small component of the radiation that is in-
elastically scattered (Chapter 24 and Appendix N).
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Comparing this condition with the definition (5.2) of the reciprocal lattice, we
arrive at the Laue condition that constructive interference will occur provided that
the change in wave vector, K = k' — X, is a vector of the reciprocal lattice.

It is sometimes convenient to have an alternative formulation of the Laue con-
dition, stated entirely in terms of the incident wave vector k. First note that because
the reciprocal lattice is a Bravais lattice, if k' — k is a reciprocal lattice vector, so is
k — k'. Calling the latter vector K, the condition that k and k' have the same magni-

tude is

k= |k — K| 6.8)
Squaring both sides of (6.8) yields the condition |

kK =$K; ' (6.9)

i.e., the component of the incident wave vector k along the reciprocal lattice vector
K must be half the length of K.

Thus an incident wave vector k will satisfy the Laue condition if and only if the
tip of the vector lies in a plane that is the perpendicular bisector of a line joining the
origin of k-space to a reciprocal lattice point K (Figure 6.5). Such k-space planes

are called Bragg planes.

Figure 6.5

The Laue condition, If the sum of k and —K’
is a vector K, and if k and k’ have the same
length, then the tip of the vector k is equi-
distant from the origin O and the tip of the
vector K, and therefore it lies in the plane
bisecting the line joining the origin to the tip
of K.

It is a consequence of the equivalence of the Bragg and von Laue points of view,
demonstrated in the following section, that the k-space Bragg plane associated with
a particular diffraction peak in the Laue formulation is parallel to the family of direct
lattice planes responsible for the peak in the Bragg formulation.

EQUIVALENCE OF THE BRAGG AND VON LAUE FORMULATIONS

The equivalence of these two criteria for constructive interference of X rays by a
crystal follows from the relation between vectors of the reciprocal lattice and families
of direct lattice planes (see Chapter 5). Suppose the incident and scattered wave
vectors, k and K/, satisfy the Laue condition that K = k' — k be a reciprocal lattice
vector. Because the incident and scattered waves have the same wavelength,® k' and
Kk have the same magnitudes. It follows (see Figure 6.6) that k' and k make the same
angle 0 with the plane perpendicular to K. Therefore the scattering can be viewed
as a Bragg reflection, with Bragg angle 6, from the family of direct lattice planes
perpendicular to the reciprocal lattice vector K.
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K=k'-k Figure 6.6

The plane of the paper contains the incident wave
vector k, the reflected wave vector k', and their differ-
ence K satisfying the Laue condition. Since the scat-
tering is elastic (k= k), the direction of K bisects the
angle between k and k’. The dashed line is the inter-
section of the plane perpendicular to K with the plane
of the paper.

To demonstrate that this reflection satisfies the Bragg condition (6.2), note that
the vector K is an integral multiple’ of the shortest reciprocal lattice vector K parallel
to K. According to the theorem on page 90, the magnitude of K, is just 27/d, where
d is the distance between successive planes in the family perpendicular to K, or to
K. Thus

K = %z—” (6.10)

On the other hand, it follows from Figure 6.6 that K = 2k sin 0, and thus

ksin 0 = f{;—’ 6.11)
Since k = 2m/4, Eq. (6.11) implies that the wavelength satisfies the Bragg condition

6.2).
Thus a Laue diffraction peak corresponding to a change in wave vector given by the
reciprocal lattice vector K corresponds to a Bragg reflection from the family of direct
lattice planes perpendicular to K. The order, n, of the Bragg reflection is just the length
of K divided by the length of the shortest reciprocal lattice vector parallel to K.
Since the reciprocal lattice associated with a given Bravais lattice is far more easily
visualized than the set of all possible planes into which the Bravais lattice can be
resolved, the Laue condition for diffraction peaks is far more simple to work with
than the Bragg condition. In the rest of this chapter we shall apply the Laue condition
to a description of three of the most important ways in which X-ray crystallographic
analyses of real samples are performed, and to a discussion of how one can extract
information not only about the underlying Bravais lattice, but also about the arrange-

ment of ions within the primitive cell.

EXPERIMENTAL GEOMETRIES SUGGESTED BY THE
LAUE CONDITION

An incident wave vector k will lead to a diffraction peak (or “Bragg reflection”)
and only if the tip of the wave vector lies on a k-space Bragg plane. Since the set ofa

7 This is an elementary consequence of the fact that the reciprocal lattice is a Bravais fattice. S
Chapter 5, Problem 4.




Figure 6.10

The Ewald construction for the powder method. (a) The Ewald sphere is the smaller sphere.
It is centered on the tip of the incident wave vector k with radius k. so that the origin O is on iis
surface. The larger sphere is centered on the origin and has a radius K. The two spheres intersect
in a circle (foreshortened to an ellipse). Bragg reflections will occur for any wave vector k' con-
necling any point on the circle of intersection to the tip of the vector k. The scattered rays
therefore lie on the cone that opens in the direction opposite to k. (b) A plane section of (a),
containing the incident wave vector. The triangle is isosceles, and thus K = 2k sin L.

By measuring the angles ¢ at which Bragg reflections are observed, one therefore
Jearns the lengths of all reciprocal lattice vectors shorter than 2k. Armed with this
information, some facts about the macroscopic crystal symmetry, and the fact that
the reciprocal lattice is a Bravais lattice, one can usually construct the reciprocal
lattice itself (see, for example, Problem 1).

DIFFRACTION BY A MONATOMIC LATTICE WITH A BASIS;
THE GEOMETRICAL STRUCTURE FACTOR

The preceding discussion was based on the condition (6.7) that rays scattered from
each primitive cell should interfere constructively. If the crystal structure is that of
4 monatomic lattice with an n-atom basis (for example, carbon in the diamond
structure or hexagonal close-packed beryllium, both of which have n = 2), then the
contents of each primitive cell can be further analyzed into a set of identical scatterers
at positions dj, ..., d, within the cell. The intensity of radiation in a given Bragg peak
will depend on the extent to which the rays scattered from these basis sites interfere
with one another, being greatest when there is complete constructive interference an
vanishing altogether should there happen to be complete destructive interference.

If the Bragg peak is associated with a change in wave vector k' — k = K, then th
path difference (Figure 6.4) between the rays scattered at d; and d; will be K - (d; — dj
and the phases of the two rays will differ by a factor ¢’ " 4:~4 Thus the phases of th
rays scattered at dy, ..., d, are in the ratios % 4 ¢® 4 The net ray scattered b
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the entire primitive cell is the sum of the individual rays, and will therefore have an
amplitude containing the factor ,
Sk= ) &4 , (6.13)
. j=1
The quantity Sg, known as the geometrical structure factor, expresses the extent
to which interference of the waves scattered from identical ions within the basis can
diminish the intensity of the Bragg peak associated with the reciprocal lattice vector
K. The intensity in the Bragg peak, being proportional to the square of the absolute
value of the amplitude, will contain a factor |Sg|? It is important to note that this
is not the only source of K dependence to the intensity. Further dependence on the
change in wave vector comes both from the ordinary angular dependence of any
electromagnetic scattering, together with the influence on the scattering of the detailed
internal structure of each individual ion in the basis. Therefore the structure factor
alone cannot be used to predict the absolute intensity in a Bragg peak.® Tt can,
however, lead to a characteristic dependence on K that is easily discerned even though
other less distinctive K dependences have been superimposed upon it. The one case,
in which the structure factor can be used with assurance is when it vanishes. This
occurs when the elements of the basis are so arranged that there is complete destructive
interference for the K in question; in that case no features of the rays scattered by
the individual basis elements can prevent the net ray from vanishing.
We illustrate the importance of a vanishing structure factor in two cases?®:

1. Body-Centered Cubic Considered as Simple Cubic with a Basis Since the body-
centered cubic lattice is a Bravais lattice, we know that Bragg reflections will occur
when the change in wave vector K is a vector of the reciprocal lattice, which is face-
centered cubic. Sometimes, however, it is convenient to regard the bcc Tattice as a
simple cubic lattice generated by primitive vectors ag, ay, and az, with a two-point
basis consisting of d; = 0 and d, = (a/2)(% + § + 2). From this point of view the
reciprocal lattice is also simple cubic, with a cubic cell of side 2n/a. However, there
will now be a structure factor Sk associated with each Bragg reflection. In the present
case, (6.13) gives

Sk =1+ exp[iK-3a® + § + 2)]. (6.14)

A general vector in the simple cubic reciprocal lattice has the form
2
K= 7(7113 + n¥ + n32). (6.15)

Substituting this into (6.14), we find a structure factor
SK =1 + ein(nl+112+rl3) =1 + (__1))11 +ng-+ng

42, nmy 4+ ny + 0y even, : (6.16)
10, ny + ny + n3  odd.

8 A brief but thorough discussion of the scattering of electromagnetic radiation by crystals, including

the derivation of detailed intensity formulas for the various experimental geometries described above, is
given by Landau and Lifshitz, Electrodynamics of Continwous Media, Chapter 15, Addison-Wesley,
Reading, Mass., 1966.

®  Further examples are given in Problems 2 and 3.
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Thus those points in the simple cubic reciprocal lattice, the sum of whose coor-
dinates with respect to the cubic primitive vectors are odd, will actually have no
Bragg reflection associated with them. This converts the simple cubic reciprocal lattice
into the face-centered cubic structure that we would have had if we had treated the
body-centered cubic direct lattice as a Bravais lattice rather than as a lattice with
a basis (see Figure 6.11).

Figure 6.11
Points in the simple cubic reciprocal lattice of side 2r/q,
for which the structure factor (6.16) vanishes, are those
(white circles) that can be reached from the origin by
moving along an odd number of nearest-neighbor bonds.
When such sites are eliminated, the remaining sites
(black circles) constitute a face-centered cubic lattice
with cubic cell of side 4n/a.

g o i~ 7 Y R T TV

Thus if, either inadvertently or for reasons of greater symmetry in description, one
chooses to describe a Bravais lattice as a lattice with a basis, one still recovers the
correct description of X-ray diffraction, provided that the vanishing of the structure
factor is taken into account.

2. Monatomic Diamond Lattice 'The monatomic diamond lattice (carbon, silicon,
germanium, or grey tin) is not a Bravais lattice and must be described as a lattice
with a basis. The underlying Bravais lattice is face-centered cubic, and the basis can
be taken to bed;, = 0, dy = (a/4)(X + § + 2), where £, §, and 2, are along the cubic
axes and a is the side of the conventional cubic cell. The reciprocal lattice is body-
centered cubic with conventional cubic cell of side 4m/a. If we take as primitive
vectors

b, 2n B 2j

=—§(?+z—x), by= @+ % -9 b= (-2, 617

then the structure factor (6.13) for K = Zn;b; is
Sk = 1 + exp [Fin(ny + ny + n3)]

J2, n; + n, + ns twice an even number, I 619)
=<14+1i ny+ ny+ nzodd, ’
10, n, + n, + n3 twice an odd number, J

To interpret these conditions on n; geometrically, note that if we substitute (6.17)
into K = Znb;, we can write the general reciprocal lattice vector in the form

4n
K = 4‘(\’1? -+ \'2?’ + \'32), (6.1
a
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we substitute (6.17)
r in the form

(6.19)

REC
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where
3
vi = 3(n + n; + n3) — ny, Y Vi=3ng + ny + ny). (6.20)
=1

We know (see Chapter 5) that the reciprocal to the fcc lattice with cubic cell of side
a is a bee lattice with cubic cell of side 4r/a. Let us regard this as composed of two
simple cubic lattices of side 4n/a. The first, containing the origin (K = 0), must
have all v; integers (according to (6.19)) and must therefore be given by K with
ny + nz + n3 even (according to (6.20)). The second, containing the “body-centered
point” (4n/a)3(X + ¥ + 2), must have all v; integers + % (according to (6.19)) and
must therefore be given by K with n, + n, + n3 odd (according to (6.20)).
Comparing this with (6.18), we find that the points with structure factor 1 + i
are those in the simple cubic sublattice of “body-centered” points. Those whose
structure factor S is 2 or 0 are in the simple cubic sublattice containing the origin,
where Zv; is even when S = 2 and odd when S = 0. Thus the points with zero struc-
ture factor are again removed by applying the construction illustrated in F igure 6.11

to the simple cubic sublattice containing the origin, converting it to a face-centered
cubic structure (Figure 6.12).

Figure 6.12

The body-centered cubic lattice with cubic cell side
4m/a that is reciprocal to a face-centered cubic lattice
with cubic cell side . When the fcc lattice is that under-
lying the diamond structure, then the white circles
indicate sites with zero structure factor. (The black
circles are sites with structure factor 2, and the gray ones
are sites with structure factor 1 + i)

DIFFRACTION BY A POLYATOMIC CRYSTAL;
THE ATOMIC FORM FACTOR

H the ions in the basis are not identical, the structure factor (6.13) assumes the form

Sk = ), filK)e™ 9, (6.21)
ji=1

where f;, known as the atomic Jorm factor, is entirely determined by the internal
structure of the ion that occupies position d; in the basis. Identical ions have identical
form factors (regardless of where they are placed), so (6.21) reduces back to (6.13),
multiplied by the common value of the form factors, in the monatomic case.

In elementary treatments the atomic form factor associated with a Bragg reflection

i
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given by the reciprocal lattice vector K is taken to be proportional to the Fourier
transform of the electronic charge distribution of the corresponding ion’?:

1
J‘dr

e™ " pi(r). (6.22)

Thus the atomic form factor f; depends on K and on the detailed features of the
charge distribution of the ion that occupies position d; in the basis. As a result, one
would not expect the structure factor to vanish for any K unless there is some for-
tuitous relation between form factors of different types. By making reasonable

assumptions about the K dependence of the different form factors, one can often
distinguish quite conclusively between various possible crystal structures on the basis
of the variation with K of the Bragg peak intensities (see, for example, Problem 5).

This concludes our discussion of the Bragg reflection of X rays. Our analysis has
exploited no properties of the X rays other than their wave nature.'’ Consequently
we shall find many of the concepts and results of this chapter reappearing in sub-
sequent discussions of other wave phenomena in solids, such as electrons (Chapter 9)

and neutrons (Chapter 24).'2

PROBLEMS

1. Powder specimens of three different monatomic cubic crystals are analyzed with a Debye-
Scherrer camera. It is known that one sample is face-centered cubic, one is body-centered cubic,
and one has the diamond structure. The approximate positions of the first four diffraction rings

in each case are (see Figure 6.13):

VALUES OF ¢ FOR SAMPLES

A

B

42.2°
49.2
72.0
87.3

28.8°
41.0
50.8
59.6

42.8°

73.2

89.0
115.0

(a) Identify the crystal structures of 4, B, and C.
(b) If the wavelength of the incident X-ray beam is 1.5 A, what is the length of the side of the

conventional cubic cell in each case?
(c) 1If the diamond structure were replaced by a zincblende structure with a cubic unit cell

of the same side, at what angles would the first four rings now occur?

10 The electronic charge density p;(
of the ion at R + d; to the electronic charge density of the crystal is p;(r — [R + d;]). (
charge is usually factored out of the atomic form factor to make it dimensionless.)

11 As a result we have been unable to make precise statements about the absolute intensity of th
Bragg peaks, or about the diffuse background of radiation in directions not allowed by the Bragg condition

12 Considered quantum mechanically, a particle of momentum p can be viewed as a wave of wave

length 4 = h/p.

1} is that of an ion of type j placed at r = 0; thus the contribution

The electronic




