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38 Chapter 2 The Sommerfeld Theory of Metals

Table 2.1

FERMI ENERGIES, FERMI TEMPERATURES, FERMI WAVE VECTORS, AND
FERMI VELOCITIES FOR REPRESENTATIVE METALS*

ELEMENT 7,/aq,  &p Ty kg Up
Li 325  474eV 551 x 10*K 112 x 10%cm™! 129 x 10® cm/sec
Na 3.93 3.24 3.77 0.92 1.07
K 4.86 2.12 2.46 0.75 0.86

| Rb 5.20 1.85 2.15 0.70 0.81
Cs 562 150 184 065 075

“Cu 2.67 7.00 8.16 1.36 1.57
Ag 3.02 5.49 6.38 1.20 1.39
Au 3.01 5.53 6.42 1.21 1.40
Be 1.87 143 16.6 1.94 2.25
Mg 2.66 7.08 8.23 1.36 1.58
Ca 3.27 4.69 5.44 1.11 1.28
Sr 3.57 393 4.57 1.02 1.18
Ba 371 3.64 423 0.98 1.13
Nb 3.07 5.32 6.18 1.18 1.37
Fe 212 111 13.0 1.71 1.98
Mn 2.14 109 12.7 1.70 1.96
Zn 2.30 9.47 11.0 1.58 1.83
Cd 2.59 7.47 8.68 1.40 1.62
Hg 2.65 7.13 8.29 1.37 1.58
Al 207 117 13.6 1.75 2.03

. Ga 2.19 104 121 1.66 1.92
In 241 8.63 10.0 1.51 1.74
Tl 2.48 8.15 9.46 1.46 1.69
Sn 222 102 11.8 1.64 1.90
Pb 2.30 9.47 11.0 1.58 1.83
Bi 2.25 9.90 11.5 1.61 1.87
Sb 2.14 109 12.7 1.70 1.96

a The table entries are calculated from the values of ry/ao given in Table 1.1 using m =
9.11 x 10728 grams. :

assumes that the electronic energy per unit volume in a 1-cm cube of copper is the

same as in a 2-cm cube).

Using (2.29) to evaluate (2.27), we find that the energy density of the electron gas is:

N
N 47t3 k<

To find the energy per electron, E/N, in the ground state, we must divide this by
N/V = kg®/3n?, which gives '

E
V

E—3h2klz‘2—~3
N 10 m 5

We can also write this result as

h2k?

1 h%kg®

kp 2m  n?

- &f.

E 3
N =5l

10m -~

(2.30)

2.31)

(2.32)

b
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CTORS, AND

F
29 x 10® cm/sec
7
36
81
15
57
39
40
25
58
28
18
13
37
)8
6
33
52
58
)3
2
74
59
20
33
37
26

e 1.1 using m =

e of copper is the
he electron gas is:
(2.30)

ust divide this by

2.31)

(2.32)

Ground-State Properties of the Electron Gas 39

where Tr, the Fermi temperature, is

& 582
Tp=2X= 22 S 10°K. :
=l " G 0 (2.33)

Note, in contrast to this, that the energy per electron in a classical ideal gas, 3kyT,
vanishes at T'= 0 and achieves a value as large as (2.32) only at T = T, ~ 10* K.
Given the ground-state energy E, one can calculate the pressure exerted by the
electron gas from the relation P = —(0E/dV)y. Since E = 3N&p and & is propor-
tional to ky?, which depends on ¥ only through a factor n?3 = (N/V)?3_ it follows
that!® ‘
2 E

P=33 (2.34)

One can also calculate the compressibility, K, or bulk modulus, B = 1/K, defined
by:

L/ 0P
B=_—=—V_—.), .
K=, 14 av)r (2.35)

Since E is proportional to V'~ %3, Eq. (2.34) shows that P varies as ¥~ /3, and therefore

5, 10E 2

=-P="—T"~—"usg. 2.36
B 3 P 7 =3 nép (2.36)
or
6.13\° " )
B = x 10*° dynes/cm?. (2.37)
Ts/do /) -

In Table 2.2 we compare the free electron bulk moduli (2.37) calculated from ry/ay,
with the measured bulk moduli, for several metals. The agreement for the heavier
alkali metals is fortuitously good, but even when (2.37) is substantially off, as it is in

Table 2.2

BULK MODULI IN 10'° DYNES/CM? FOR SOME
TYPICAL METALS"

METAL FREE ELECTRON B MEASURED B
Li 239 11.5
Na 9.23 6.42
K 3.19 . 2.81
Rb 2.28 s 1.92
Cs 1.54 1.43
Cu 63.8 134.3
Ag . 34.5 99.9
Al 228 76.0

“ The free electron value is that for a free electron gas at the observed
density of the metal, as calculated from Eq. (2.37).

16

Atnonzero temperatures the pressure and energy density continue to obey this relation. See (2.101).




ough the electronic
nates and changing

“(8). (2.60)

(2.61)
the form in (2.60)

(2.62)

me (or often simply
of writing g is

(2.63)

(2.21) and (2.25). A
evels at the Fermi
:nt forms:

(2.64)

(2.65)

(2.66)

2.67)

'm the free electron
61) or (2.63) of the
>rms of which (2.66)
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: Figure 2.3
Sy . : The Fermi function, f(&) =
1.0 — - 1/[€P¢m + 1] versus & for
: given u, at (a) T =0 and
: g  (b) T =~ 0.01u(of order room
U temperature, at typical me-
(a) 555 tallic densities). The two

curves differ only in a region
\ s

of order kzT about p.
n B

(b) —m
: (A&~ kT

and (2.67) remain valid for any set of noninteracting (that is, independent) electrons.?3
Thus we shall later be able to apply results deduced from (2.66) and (2.67) to con-
siderably more sophisticated models of independent electrons in metals.

In general, the integrals (2.66) and (2.67) have a rather complex structure. There
is, however, a simple systematic expansion that exploits the fact that at almost all
temperatures of interest in metals, T is very much smaller than the Fermi tempera-
ture (2.33). In Figure 2.3 the Fermi function f(8) is plotted at T = 0 and at room
temperature for typical metallic densities (ks T/1 ~ 0.01). Evidently f differs from its
zero temperature form only in a small region about u of width a few kzT. Thus
the way in which integrals of the form [©_ H(s) /(&) d& differ from their zero tem-
perature values, [T, H(8) d&, will be entirely determined by the form of H(8) near
& = p. If H(g) does not vary rapidly in the energy range of the order of kpT about p,
the temperature dependence of the integral should be given quite accurately by
replacing H(€) by the first few terms in its Taylor expansion about § = pu:

g — n
(—,"). o (2.68)
g=p n! Q)(fehﬁbébvN
This procedure is carried out in Appendix C. The result is a series of the form:

0

dn
HE) = ). 1 HE)

0 2n—1

Y. (kgT)*"a, ‘j =t H(8) (2.69)
n=1 & §=pn

which is known as the Sommerfeld expansion.?* The a, are dimensionless constants
of the order of unity. The functions H one typically encounters have major variations
on an energy scale of the order of y, and generally (d/dg)" H(&)|;=, is of the order of
H(w)/p". When this is the case, successive terms in the Sommerfeld expansion are

f " HE)/(e) de = f” H(8) de +
s ™ ,

23 See Chapter 8.
24 The expansion is not always exact, but is highly reliable unless H(g) has a singularity very close to
& = p.If, for example, H is singular at & = 0 (as is the free electron density of levels (2.63)) then the expan-

sion will neglect terms of the order of exp (— p/ky T), which are typically of order e~ 1% ~ 10=%. See also
Problem 1.




48 Chapter 2 The Sommerfeld Theory of Metals

i The prediction of a linear specific heat is one of the most important consequences
i ‘ ; of Fermi-Dirac statistics, and provides a further simple test of the electron gas theory
of a metal, provided one can be sure that degrees of freedom other than the electronic
ones do not make comparable or even bigger contributions. As it happens, the ionic
degrees of freedom completely dominate the specific heat at high temperatures. How-
ever, well below room temperature their contribution falls off as the cube of the ‘

Table 2.3
SOME ROUGH EXPERIMENTAL VALUES FOR THE COEFFICIENT
OF THE LINEAR TERM IN T OF THE MOLAR SPECIFIC HEATS
OF METALS, AND THE VALUES GIVEN BY SIMPLE FREE
ELECTRON THEORY
X FREE ELECTRON } MEASURED 7 RATIO®
o B /‘ ELEMENT (in 10~# cal-mole~1-K ~2) (m*m)
PNEEY , [ i
0,622, Li 324 1.8 42 2.3
Na 3,72 2.6 35 13 ~
K 48 4.0 4.7 12 '
Rb 4.7 4.6 5.8 1.3 !
Cs 4% 53 7.7 L5 ,
Cu 1.2 1.6 ©13 i
Ag 1.5 1.6 1.1 i
Au 1.5 1.6 1.1
Be ) 1.2 0.5 0.42 :
2.2 Mg 2, 66 24 3.2 13 |
Ca 3.6 6.5 1.8 [
Sr 43 8.7 2.0 g
Ba 4.7 6.5 t 14
Nb 1.6 20 12
Fe 1.5 12 8.0 |
Mn 1.5 40 27 t
Zn 1.8 A 14 0.78
Cd 2.3 1.7 0.74
. Hg ) 2.4 5.0 2.1
@73 Al 208 22 , 3.0 14
Ga v 24 ' 15 0.62 ]
In 29 43 1.5 g
T 3.1 5.5 1.1 :
Sn 33 44 1.3
Pb 3.6 7.0 C19 4
Bi 4.3 - 0.2 0.047 2
Sb 3.9 1.5 0.38 :
4 Since the theoretical value of y is proportional to the density of levels at
the Fermi level, which in turn is proportional to the electronic mass m, one L
sometimes defines a specific heat effective mass m* so that m*/m is the ratio ’
of the measured y to the free electron y. Beware of identifying this specific heat ;i
effective mass with any of the many other effective masses used in solid-state :
theory. (See, for example, the index entries under “ffective mass.”) g
I
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metal, H. A. Lorentz showed, using the classical Maxwell-Boltzmann velocity dis-
tribution, that an energy-dependent relaxation time would lead to temperature depen-
dence in the DC and AC conductivities, as well as to a nonvanishing magnetoresis-
tance and a field- and temperature-dependent Hall coefficient. As one might now
expect from the inappropriateness of the classical velocity distribution, none of these
corrections were in any way able to bring the discrepancies of the Drude model into
better alignment with the observed facts about metals.3! F urthermore, we shall see
(Chapter 13) that when the correct Fermi-Dirac velocity distribution is used, adding
an energy dependence to the relaxation time has little significant effect on most of
the quantities of interest in a metal.? If one calculates the DC or AC conductivities,
the magnetoresistance, or the Hall coefficient assuming an energy-dependent 7(8), the
results one finds are the same as those one would have calculated assuming an energy-
independent 7, equal to 7(&). In metals these quantities are determined almost entirely
by the way in which electrons near the Fermi level are scattered.*® This is another

very important consequence of the Pauli exclusion principle, the justification of which
will be given in Chapter 13.

PROBLEMS

1. The Free and Independent Electron Gas in Two Dimensions

(@) What is the relation between n and kg in two dimensions?

(b) What is the relation between kp and r, in two dimensions?

(¢) Prove that in two dimensions the free electron density of levels g(8) is a constant indepen-
dent of & for & > 0, and 0 for &§ < 0. What is the constant?

(d) Show that 8)isco every term in the Sommerfeld expansion for n vanishes o )

i - L L/

exceptthe T = 0 term, Deduce that 4= & at any temperature, i g (1- e lﬁ' AR
K voasd ¥

(¢) Deduce from (2.67) that when g(g) is as in c), then £ PP & /A S
;—yfmo/w E7y - =) A _ /@

kgTln (1 “#Ty =g, 2.95

bt K n( é)rir«r s.«)? r ( )

(f) Estimate from (2.95) the amount by which p differs from &,. Comment on the numerical
significance of this “failure” of the Sommerfeld expansion, and on the ma ematical reason for

the “failure.” e sk mech ng ‘ {Mp/jﬁ}/’ﬁ,g 3 bt ool /v_,_ EF-

2. Thermodynamics of the Free and Independent Electron Gas
(a) Deduce from the thermodynamic identities

ou 0s ,
c, = <ﬁ>” = T<ﬁ>n’ (2.96)

The Lorentz model is, however, of considerable importance in the description of semiconductors
(Chapter 29).

32 The thermopower is a notable exception.

These assertions are correct to leading order in k, T/s butin metals this is always a good expansion
parameter.

31

33
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from Egs. (2.56) and (2.57), and from the third law of thermodynamics (s —» 0 as T — 0) that the
entropy density, s = S/V is given by:

s = —kg J% [flnf+ (1 —=/)n( -1, (2.97)

where f(6(k)) is the Fermi function (Eq. (2.56)).
(b) Since the pressure P satisfies Eq. (B.5) in Appendix B, P = —(u — Ts — un),deduce from

(2.97) that
dk (h*k?2m) — p
P = kBTJW In <1 + exp [— _—TBTT_ : (2.98)
Show that (2.98) implies that P is a homogeneous function of u and T of degree 5/2; that is,
P(Au, AT) = 2P (u, T) (2.99)

for any constant A.
(¢) Deduce from the thermodynamic relations in Appendix B that

oP oP
o ) = 2.100
<6#>T " (6 T)u ’ ( )

(d) By differentiating (2.99) with respect to A show that the ground-state relation (2.34) holds

at any temperature, in the form

P=2u (2.101)

(e) Show that when kT <« &, the ratio of the constant-pressure to constant-volume specific

heats satisfies
(€)= o)
Co 3 &F SF

(f) Show, by retaining further terms in the Sommerfeld expansions of u and n, that correct
to order T the electronic heat capacity is given by

2
¢ = %/cBZTg(aF)

n4 g(&r)\? g"(sﬂ
— kT3 )| 15 — 21 =———. 2.102
90 g(g”[ <g(sF>> a(er) (2.102)

3. The Classical Limit of Fermi-Dirac Statistics

The Fermi-Dirac distribution reduces to the Maxwell-Boltzmann distribution, provided that the

Fermi function (2.56) is much less than unity for every positive &, for in that case we must have
f(8) ~ e~ (&= wIkpT, (2.103)
The necessary and sufficient condition for (2.103) to hold for all positive & is
e MkBT > 1. (2.104)
(a) Assuming that (2.104) holds, show that
re = e #3BT 3B S Omk,T) ™ 1/2, (2.105)

T ————
IR i




> 0 as T— 0) that the
(2.97)

s — un), deduce from

>_ (2.98)

;gree 5/2; that is,
(2.99)

(2.100)
srelation (2.34) holds

(2.101)

itant-volume specific

4 and n, that correct

J, (2.102)

n, provided that the
case we must have

(2.103)

(2.104)

(2.105)

I
i
I'f
i
!
f
I
;
|

Problems 55

In conjunction with (2.104) this requires that

hZ 1/2
2.106
R <2ka7*) : (2108}

which can also be taken as the condition for the validity of classica] Statistics,
(b) What is the significance of the length r, must exceed?
() Show that (2.106) leads to the numerical condition

1 5 1/2
Ly (LTK> . ' 2.107)
0

(d) Show that the normalization constant m3/4n3h3 appearing in the Fermi-Dirac velocity dis-
tribution (2.2) can also be written as (3\/5/4)/1(n1/27rkBTF)3/ %50 that f5(0)/ 70) = (4/3/7)( Ty/T)32,

4. Insensitivity of the Distribution Function to Smaly Changes in the Total Number
of Electrons

(@) Show, when kpT « &, that when the number of electrons changes by one at fixed tem-
perature, the chemical potential changes by

where g(8) is the density of levels,

(b) Show, as a consequence of this, that the most the probability of any level being occupied
can change by is

[Use the free electron evaluation (2.65) of 9(&p).] Althqugh temperatures of millidegrees Kelvin
can be reached, at which Er/kT ~ 10%, when N is of order 1022 then A f is still negligibly small.




