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160 Chapter 9 Electrons in a Weak Periodic Potential

& Figure 9.4
(a) The free electron & vs, k
parabola in one dimension,
(b) Step 1 in the construction
to determine the distortion
in the free electron parabola
in the neighborhood of g
Bragg “plane,” due to a weak
periodic potential. If the
Bragg “plane” is that deter-
mined by K, a second free
electron parabola is drawn,
centered on K. (c) Step 2 in
the construction to deter-
mine the distortion in the
free electron parabola in the
neighborhood of a Bragg
“plane.” The degeneracy of

- the two parabolas at K/2
is split. (d) Those portions
of part (c) corresponding
to the original free electron
parabola given in (a). (¢) Ef-
fect of all additional Bragg
“planes” on the free electron
parabola. This particular
way of displaying the elec-
tronic levels in a periodic
potential is known as the
extended-zone scheme. (f) The
levels of (e), displayed in a
reduced-zone scheme. (g) Free
electron levels of (e) or (f) in
a repeated-zone scheme.
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One can also emphasize the periodicity of the labeling in k-space by periodically
extending Figure 9.4f throughout all of k-space to arrive at Figure 9.4g, which em-
phasizes that a particular level at k can be described by any wave vector differing
from k by a reciprocal lattice vector. This representation is the repeated-zone scheme
(see page 142). The reduced-zone scheme indexes each level with a k lying in the first
zone, while the extended-zone scheme uses a labeling emphasizing continuity with
the free electron levels. The repeated-zone scheme is the most general representation,

|
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tructed by noting
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ynstruction expressed
two constant-energy
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particular k.

surface of constant
urface whose mag-
ction; i.e.,
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the band structure.

Jevels, indicated by arrows at

van Hove Singularities 145

Equation (8.63) and the analysis leading to it will be applied in subsequent
chapters.27 Here we only note the following quite general property of the density
of levels:

Because &,(k) is periodic in the reciprocal lattice, bounded above and below for
each n, and, in general, everywhere differentiable, there must be values of k in each
primitive cell at which |V8| = 0. For example, the gradient of a differentiable function
vanishes at local maxima and minima, but the boundedness and periodicity of each
&,(k) insure that for each n there will be at least one maximum and minimum in.
each primitive cell.”® _

When the gradient of &, vanishes, the integrand in the density of levels (8.63)
diverges. It can be shown that in three dimensions2® such singularities are integrable,
yielding finite values for g,. However, they do result in divergences of the slope,
dg,/dé. These are known as van Hove singularities.® They occur at values of & for
which the constant energy surface S,(8) contains points at which V&,(k) vanishes.
Since derivatives of the density of levels at the Fermi energy enter into all terms but
the first in the Sommerfeld expansion,®! one must be on guard for anomalies in low-
temperature behavior if there are points of vanishing V&,(k) on the Fermi surface.

Typical van Hove singularities are shown in Figure 8.3 and are examined in
Problem 2, Chapter 9. ' ;

Figure 8.3
Characteristic van Hove sin-
gularities in the density of

right angles to the &-axis.

This concludes our discussion of the general features of one-electron levels in a ‘
periodic potential.>* In the following two chapters we consider two very important, B
but quite different, limiting cases, which provide concrete illustrations of the rather
abstract discussions in this chapter.

27 See also Problem 2. ) )

28 A very general analysis of how many points’ of vanishing gradient must occur is fairly complex.
See, for example, G. Weinreich, Solids, Wiley, New York, 1965, pp. 73=79.

29 I one dimension g,(8) itself will be infinite at a van Hove singularity.

30 Essentially the same singularities occur in the theory of lattice vibrations. See Chapter 23.

31 See, for example, Problem 2f, Chapter 2.

32 Problem 1 pursues the general analysis somewhat further in the tractable but somewhat misleading
case of a one-dimensional periodic potential. ‘




Figure 9.4
(a) The free electron & vs. k
parabola in one dimension.
(b) Step 1 in the construction
to determine the distortion
in the free electron parabola
in the neighborhood of a
Bragg “plane,” due to a weak
periodic potential. If the
Bragg “plane” is that deter-
mined by K, a second free
electron parabola is drawn,
centered on K. (c) Step 2 in
the construction to deter-
mine the distortion in the
free electron parabola in the
neighborhood of a Bragg
“plane.” The degeneracy of
the two parabolas at K/2
is split. (d) Those portions
of part (c) corresponding
to the original free electron
parabola given in (a). (¢) Ef
fect of all additional Bragg
“planes” on the free electron
parabola. This particular
way of displaying the elec-
tronic levels in a periodic
potential is known as the
extended-zone scheme. (f) The
levels of (e), displayed in a
reduced-zone scheme. (g) Free
electron levels of (¢) or (f) in
a repeated-zone scheme.

1g in k-space by periodically
re at Figure 9.4g, which em-
)y any wave vector differing
1is the repeated-zone scheme
svel with a k lying in the first
:mphasizing continuity with
most general :epresentation,
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put is highly redundant, since the same level is shown many tim. i
e
At y s, for all equivalent

' ENERGY-WAVE-VECTOR CURVES IN THREE DIMENSIONS

In three dimensions the structure of the energy bands is sometimes displayed by
plotting & vs. k along particular straight lines in k-space. Such curves are generally

~ shown in a reduced-zone scheme, since for general directions in k-space they are not

Periodic. Even in the complgtely free electron approximation these curves are surpris-
; mg]y complex. An exampl_e is shown in Figure 9.5, which was constructed by plotting
as k varied aiong the particular lines shown, the values of &)_y = A%k — K)2/2m for,
all reciprocal lattice vectors K close enough igin to i
gh to the origin to lead t
than the top of the vertical scale. ¢ e e

Figure 9.5

Free electron energy levels
for an fcc Bravais lattice. The
energies are plotted along
lines in the first Brillouin
zone joining the points
I'k=0), K, L, W, and X.
&x is the energy at point X
([#*/2m][2n/a]?). The hori-
zontal lines give Fermi
energies for the indicated
m{mbers of electrons per
primitive cell. The number of
dots on a curve specifies the
number of degenerate free
electron levels represented by
the curve. (From F. Herman,
in An Atomistic Approach to
the Nature and Properties of
Materials, J. A. Pask, ed.;..-
Wiley, New York, 1967)

Note tl_lat most of the curves are highly degenerate. This is because the directions
alqng which the energy has been plotted are all lines of fairly high symmetry, so
points along them are likely to be as far from several other reciprocal lattice Vec’zors
as they are from any given one. The addition of a weak periodic potential will in
genera} remove some, but not necessarily all, of this degeneracy. The mathematical
theory’ of groups is then used to determine how such degeneracies will be split.

THE ENERGY GAP

Quite generally, a weak periodi ial i
Iy, periodic potential introduces an “ener ”
planes. By this we mean the following: % gep” at Buoee
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162 Chapter 9 Electrons in a Weak Periodic Potential

When Uy = 0, as k crosses a Bragg plane the energy changes continuously from
the lower root of (9.26) to the upper, as illustrated in Figure 9.4b. When Uk # 0,
this is no longer so. The energy only changes continuously with k, as the Bragg plane
is crossed, if one stays with the lower (or upper) root, as illustrated in Figure 9.4c,
To change branches as k varies continuously it is now necessary for the energy to
change discontinuously by at least 2|Ug|-

We shall see in Chapter 12 that this mathematical separation of the two bands
is reflected in a physical separation: When the action of an external field changes
an electron’s wave vector, the presence of the energy gap requires that upon crossing
the Bragg plane, the electron must emerge in a level whose energy remains in the

original branch of &(k). It is this property that makes the energy gap of fundamental
importance in electronic transport properties.

BRILLOUIN ZONES

Using the theory of electrons in a weak periodic potential to determine the complete
band structure of a three-dimensional crystal leads to geometrical constructions of
great complexity. It is often most important to determine the Fermi surface (page 141)
and the behavior of the &,(k) in its immediate vicinity.

In doing this for weak potentials, the procedure is first to draw the free electron
Fermi sphere centered at k = 0. Next, one notes that the sphere will be deformed
in a manner of which Figure 9.6 is characteristic!! when it crosses a Bragg plane and
in a correspondingly more complex way when it passes near several Bragg planes.
When the effects of all Bragg planes are inserted, this leads to a representation of the
Fermi surface as a fractured sphere in the extended-zone scheme. To construct the
portions of the Fermi surface lying in the various bands in the repeated-zone scheme
one can make a similar construction, starting with free electron spheres centered
about all reciprocal lattice points. To construct the Fermi surface in the reduced-zone
scheme, one can translate all the pieces of the single fractured sphere back into the
first zone through reciprocal lattice vectors. This procedure is made systematic
through the geometrical notion of the higher Brillouin zones.

Recall that the first Brillouin zone is the Wigner-Seitz primitive cell of the reciprocal
lattice (pages 73 and 89), i.e. the set of points lying closer to K = 0 than to any other

Figure 9.6
(a) Free electron sphere cut-
ting Bragg plane located at
3K from the origin (Ug=0).
(b) Deformation of the free
electron sphere near the
Bragg plane when U, # 0.
The constant-energy surface
intersects the plane in two
@ ) circles, whose radii are cal-
culated in Problem 1.

11 This follows from the demonstration on page 159 that a constant-energy surface is perpendicular

to a Bragg plane when they intersect, in the nearly free electron approximation.
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Brillouin Zones 163

reciprocal lattice point. Since Bragg planes bisect the lines joining the origin to points
of the reciprocal lattice, one can equally well define the first zone as the set of points
that can be reached from the origin without crossing any Bragg planes.?

Higher Brillouin zones are simply other regions bounded by the Bragg planes,
defined as follows:

The first Brillouin zone is the set of points in k-space that can be reached from
the origin without crossing any Bragg plane. The second Brillouin zone is the set of
points that can be reached from the first zone by crossing only one Bragg plane. The
(n + 1)th Brillouin zone is the set of points not in the (n — 1)th zone that can be
reached from the nth zone by crossing only one Bragg plane.
~ Alternatively, the nth Brillouin zone can be defined as the set of points that can be
reached from the origin by crossing n — 1 Bragg planes, but no fewer.

These definitions are illustrated in two dimensions in Figure 9.7. The surface of
the first three zones for the fcc and bee lattices are shown in Figure 9.8. Both definitions
emphasize the physically important fact that the zones are bounded by Bragg planes.
Thus they are regions at whose surfaces the effects of a weak periodic potential are
important (i.e., first order), but in whose interior the free electron energy levels are
only perturbed in second order.

Figure 9.7

Illustration of the definition of the Brillouin
zones for a two-dimensional square Bravais
lattice. The reciprocal lattice is also a square
lattice of side b. The figure shows all Bragg
planes (lines, in two dimensions) that lie within
the square of side 2b centered on the origin.
These Bragg planes divide that square-into
regions belonging to zones 1 to 6. (Only zones
1, 2, and 3 are entirely contamed within the
square, however)

It is very important to note that each Brillouin zone is a primitive cell of the
reciprocal lattice. This is because the nth Brillouin zone is simply the set of points
the_lt have the origin as the nth nearest reciprocal lattice point (a reciprocal lattice
point K is nearer to a point k than k is to the origin if and only if k is separated from
the origin by the Bragg plane determined by K). Given this, the proof that the nth
Br'illouin zone is a primitive cell is identical to the proof on page 73 that the Wigner-
Seitz cell (i.e., the first Brillouin zone) is primitive, provided that the phrase “nth
nearest neighbor” is substituted for “nearest neighbor” throughout the argument.

12 We exclude from consideration points lying on Bragg planes, which turn out to be points common

to the surfacerf two or more zones. We define the zones in terms of their interior points.




Figure 9.8

Surfaces of the first, second,
and third Brillouin zones for
(a) body-centered cubic and
(b) face-centered cubic crys.
tals. (Only the exterior sur-
faces are shown. It follows
from the definition on page
163 that the interior surface
of the nth zone is identica]
to the exterior surface of the
(n — 1)th zone.) Evidently
the surfaces bounding the
zones become increasingly
complex as the zone number
increases. In practice it is
often simplest to construct
free electron Fermi surfaces
by procedures (such as those
described in Problem 4) that
avoid making use of the ex-
plicit form of the Brillouin
zones. (After R. Liick, doc-
toral dissertation, Techni-
sche Hochschule, Stuttgart,
1965.)

Because each zone is a primitive cell, there is a simple algorithm for constructing
the branches of the Fermi surface in the repeated-zone scheme!3:

1. Draw the free electron Fermi sphere.

2. Deform it slightly (as illustrated in Figure 9.6) in the immediate vicinity of every

Bragg plane. (In the limit of exceedingly weak potentials this step is sometimes
ignored to a first approximatign.)
Take that portion of the surface of the free electron sphere lying within the nth
Brillouin zone, and translate it through all reciprocal lattice vectors. The resulting
surface is the branch of the Fermi surface (conventionally assigned to the nth
band) in the repeated-zone scheme.#

13 The representation of the Fermi surface in the repeated-zone scheme is the most general. After
surveying each branch in its full periodic splendor, one can pick that primitive cell which most lucidly
represents the topological structure of the whole (which is often, but by no means always, the first Brillouin
Zone).

14 . An alternative procedure is to translate the pieces of the Fermi surface in the nth zone through
those reciprocal lattice vectors that take the pieces of the nth zone in which they are contained, into the
first zone. (Such translations exist because the nth zone is a primitive cell.) This is illustrated in Figure 9.9.
The Fermi surface in the repeated-zone scheme is then constructed by translating the resulting first zone
structures through all reciprocal lattice vectors.




Figure 9.8
Surfaces of the first, second,
and third Brillouin zones for
. (a) body-centered cubic and
(b) face-centered cubic crys-
tals. (Only the exterior sur-
faces are shown. It follows
from the definition on page
163 that the interior surface
of the nth zone is identical

to the exterior surface of the

(n — 1)th zone.) Evidently
the surfaces bounding the
zones become increasingly
complex as the zone number
increases. In practice it is
often simplest to construct
free electron Fermi surfaces
by procedures (such as those
described in Problem 4) that
avoid making use of the ex-
plicit form of the Brillouin
zones. (After R. Liick, doc-
toral dissertation, Techni-
sche Hochschule, Stuttgart,
1965.)
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Figure 9.9

The free electron Fermi sphere for a face-centered cubic metal of valence 4. The first zone
lies entirely within the interior of the sphere, and the sphere does not extend beyond the
fourth zone. Thus the only zone surfaces intersected by the surface of the sphere are the
(exterior) surfaces of the second and third zones (cf. Figure 9.8b). The second-zone Fermi
surface consists of those parts of the surface of the sphere lying entirely within the poly-
hedron bounding the second zone (ie., all of the sphere except the parts extending beyond
the polyhedron in (a)). When translated through reciprocal lattice vectors into the first
zone, the pieces of the second-zone surface give the simply connected figure shown in (©).
(It is known as a “hole surface”; the levels it encloses have higher energies than those
outside). The third-zone Fermi surface consists of those parts of the surface of the sphere
lying outside of the second zone (ie., the parts extending beyond the polyhedron in (a))
that do not lie outside the third zone (i.e., that are contained within the polyhedron shown
in (b)). When translated through reciprocal lattice vectors into the first zone, these pieces
of sphere give the multiply connected structure shown in (d). The fourth-zone Fermi sur-
face consists of the remaining parts of the surface of the sphere that lie outside the third
zone (as shown in (b)). When translated through reciprocal lattice vectors into the first
zone they form the “pockets of electrons” shown in (¢). For clarity (d) and (e) show only
the intersection of the third and fourth zone Fermi surfaces with the surface of the first
zone. (From R. Liick, op. cit.) )




