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WIKIPEDIA

Angular momentum operator

one of the three fundamental properties of motion.[!]

There are several angular momentum operators: total angular momentum (usually denoted J),
orbital angular momentum (usually denoted L), and spin angular momentum (spin for short,
usually denoted S). The term angular momentum operator can (confusingly) refer to either the total or

analogous to classical angular momentum. The angular momentum operator plays a central role in the
theory of atomic physics and other quantum problems involving rotational symmetry. In both classical
and quantum mechanical systems, angular momentum (together with linear momentum and energy) is

the orbital angular momentum. Total angular momentum is always conserved, see Noether's theorem.
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Overview

In quantum mechanics, angular momentum can refer to one of three different, but related things.

Orbital angular momentum



The classical definition of angular momentum is L = r X p. The
quantum-mechanical counterparts of these objects share the
same relationship:

L=rxp

where r is the quantum position operator, p is the quantum
momentum operator, x is cross product, and L is the orbital
angular momentum operator. L (just like p and r) is a vector
operator (a vector whose components are operators), i.e.
L = (L,, Ly, L,) where Ly, Ly, L, are three different quantum-

mechanical operators.

In the special case of a single particle with no electric charge and
no spin, the orbital angular momentum operator can be written
in the position basis as:

"Vector cones" of total angular
momentum J (purple), orbital L (blue),
and spin S (green). The cones arise due
L= ——z'ﬁ(r X V) to quantum uncertainty between

measuring angular momentum
components (see below).

where V is the vector differential operator, del.

Spin angular momentum

There is another type of angular momentum, called spin angular momentum (more often shortened to
spin), represented by the spin operator S. Spin is often depicted as a particle literally spinning around an
axis, but this is only a metaphor: spin is an intrinsic property of a particle, unrelated to any sort of motion
in space. All elementary particles have a characteristic spin, which is usually nonzero. For example,
- electrons always have "spin 1/2" while photons always have "spin 1" (details below).

Total angular momentum

Finally, there is total angular momentum J, which combines both the spin and orbital angular
momentum of a particle or system:

J=L+S.

Conservation of angular momentum states that J for a closed system, or J for the whole universe, is
conserved. However, L and S are not generally conserved. For example, the spin—orbit interaction allows
angular momentum to transfer back and forth between L and S, with the total J remaining constant.

Commutation relations

Commutation relations between components

The orbital angular momentum operator is a vector operator, meaning it can be written in terms of its
vector components L = (L, Ly, L,). The components have the following commutation relations with

each other:[2]

[L, L] = hL,, [L,,L,]=ikL,, [L,,L,]=4hL,,

where [ , ] denotes the commutator




[X,Y] = XY - YX.

This can be written generally as
3
[Ll’ Lm] = zhz Etmn Lin,
n=1

where [, m, n are the component indices (1 for x, 2 for y, 3 for z), and ¢}, denotes the Levi-Civita symbol.

A compact expression as one vector equation is also possible:[3]
L x L = kL

The commutation relations can be proved as a direct consequence of the canonical commutation relations
[1, Pm] = ihOpm, where 8y, is the Kronecker delta.

There is an analogous relationship in classical physics:[4]
{Li, L;} = eiju L

where L, is a component of the classical angular momentum operator, and {, } is the Poisson bracket.

The same commutation relations apply for the other angular momentum operators (spin and total
angular momentum):!5]

3 3
[St, Sm] =B €tmnSn, [Jby Jm] = iR Y Etmn .
n=1

n=1
These can be assumed to hold in analogy with L. Alternatively, they can be derived as discussed below.

These commutation relations mean that L has the mathematical structure of a Lie algebra, and the ejmp
are its structure constants. In this case, the Lie algebra is SU(2) or SO(3) in physics notation (su(2) or
so(3) respectively in mathematics notation), i.e. Lie algebra associated with rotations in three

dimensions. The same is true of J and S. The reason is discussed below. These commutation relations are
relevant for measurement and uncertainty, as discussed further below.

Commutation relations involving vector magnitude

Like any vector, a magnitude can be defined for the orbital angular momentum operator,
LP=Li+L3+L2.

L2 is another quantum operator. It commutes with the components of L,
[L?,L.] = [I?,L,] = [L?,L,] =0.

One way to prove that these operators commute is to start from the [Ly, L,;,] commutation relations in the
previous section:

Click [show] on the right to see a proof of [L2, L,] = 0, starting from the
[Lg, L] commutation relations!®!
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[L?, L, = [L%,L,] + [L%, Ls] + [L2, Lo
- Ly [L'.WLIB] + [Ly’Lm] Ly + LZ [LZ,L(B] + [Ll’Lw] LZ
= Ly (—ihL,) + (—ihL,) L, + L, (iRLy) + (ihLy) L,
=0

Mathematically, L2 is a Casimir invariant of the Lie algebra SO(3) spanned by L.

As above, there is an analogous relationship in classical physics:
{1, L.} = {1, I} = {13, L.} = 0

where L; is a component of the classical angular momentum operator, and {, } is the Poisson bracket.[”]

Returning to the quantum case, the same commutation relations apply to the other angular momentum
operators (spin and total angular momentum), as well,

[SZ’ S’L] =0,
[J2,J;] = 0.

Uncertainty principle

In general, in quantum mechanics, when two observable operators do not commute, they are called
complementary observables. Two complementary observables cannot be measured simultaneously;
instead they satisfy an uncertainty principle. The more accurately one observable is known, the less
accurately the other one can be known. Just as there is an uncertainty principle relating position and
momentum, there are uncertainty principles for angular momentum.

The Robertson—Schrodinger relation gives the following uncertainty principle:

k
01,01, 2 5 (L)

where ox is the standard deviation in the measured values of X and (X)) denotes the expectation value of
X. This inequality is also true if x, y, z are rearranged, or if L is replaced by J or S.

Therefore, two orthogonal components of angular momentum (for example Ly and Ly) are

complementary and cannot be simultaneously known or measured, except in special cases such as
L,=Ly=L,=0.

It is, however, possible to simultaneously measure or specify L? and any one component of L; for
example, L? and L,. This is often useful, and the values are characterized by the azimuthal quantum

simultaneous eigenstate of the operators L2 and Ly, but not of Ly or Ly. The eigenvalues are related to l
and m, as shown in the table below.

Quantization

In quantum mechanics, angular momentum is quantized — that is, it cannot vary continuously, but only
in "quantum leaps" between certain allowed values. For any system, the following restrictions on
measurement results apply, where ki is reduced Planck constant:
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If you measure...

...the result can be...

Notes

L,

(hm), wherem € {...,—2,-1,0,1,2,...}

m is sometimes called magnetic quantum
number.

This same quantization rule holds
for any component of L; e.g., Ly or
L

y-

This rule is sometimes called
spatial quantization. (]

Syord,

(Rm), where
me{...,—1,-05,0,0.5,1,15,...}

For S;, mis sometimes called spin
projection quantum number.

For J,, m is sometimes called fotal
angular  momentum  projection
quantum number.

This same quantization rule holds
for any component of S or J; e.g.,
Sy or Jy.

(F?£(¢+ 1)), where £ € {0,1,2,...}

L2is defined by L? = L2 + L2 + L2.
£ is sometimes called azimuthal

quantum number or orbital quantum
number.

SZ

(R®s(s + 1)), where s € {0,0.5,1,1.5,...}

sis called spin quantum number or just
spin. For example, a spin-%2 pat:twigje isa
particle where s =%,

J2

(R%j(5 + 1)), where j € {0,0.5,1,1.5,...}

jis sometimes called total angular
momentum quantum number.

L*and L,
simultaneously

(R£(¢ + 1)) for L?, and (imy) for L,
where £ € {0,1,2,...} and

me € {—£,(—£+1),...,(E—1),8}

(See above for terminology.)

S% and S,
simultaneously

(A?s(s + 1)) for §2, and (hm;,) for S;
where s € {0,0.5,1,1.5,...} and

ms € {—s8,(—s+1),...,(s—1),s}

(See above for terminology.)

J? and J,
simultaneously

(R?3(j + 1)) for J%, and (hm;) for J,
where j € {0,0.5,1,1.5,...} and

m; € {_ja (".7+ 1)7""(.7-“ 1),j}

(See above for terminology.)

Derivation using ladder operators
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A common way to derive the quantization rules above is the method
of ladder operators.[9] The ladder operators are defined:

J_,].. = J.’B +in,
_=Jy iy

Suppose a state [¢) is a state in the simultaneous eigenbasis of J 2
and J, (i.e., a state with a single, definite value of J 2 and a single,
definite value of J,). Then using the commutation relations, one can
prove that J |¢) and J_|4) are also in the simultaneous eigenbasis,

with the same value of J2, but where J,|9) is increased or decreased | this standing wave on a circular
by k, respectively. (It is also possible that one or both of these result  string, the circle is broken into
vectors is the zero vector.) (For a proof, see ladder operator#Angular ~ exactly 8 wavelengths. A standing

momentum.)

By manipulating these ladder operators and using the commutation
rules, it is possible to prove almost all of the quantization rules above.

wave like this can have 0, 1, 2, or
any integer number of wavelengths
around the circle, but it cannot have
a non-integer number of
wavelengths like 8.3. In quantum

mechanics, angular momentum is
quantized for a similar reason.

Click [show] on the right to see more details in the ladder-operator proof
of the quantization rules!®!
Before starting the main proof, we will note a useful fact: That JZ, JZ, JZ are

positive-semidefinite operators, meaning that all their eigenvalues are
nonnegative. That also implies that the same is true for their sums, including

J? =JZ + J? +J2 and (J* — JZ) = (JZ + J}). The reason is that the
square of any Hermitian operator is always positive semidefinite. (A Hermitian

operator has real eigenvalues, so the squares of those eigenvalues are
nonnegative.)

As above, assume that a state |¢) is a state in the simultaneous eigenbasis of
J? and J,. Its eigenvalue with respect to J? can be written in the form
F25(j + 1) for some real number j > 0 (because as mentioned in the previous

paragraph, J? has nonnegative eigenvalues), and its eigenvalue with respect
to J, can be written hm for some real number m. Instead of |¢) we will use
the more descriptive notation |¢) = |j, m).

Next, consider the sequence ("ladder") of states

{'“ ’ J——J—]j,m>a J—lj7m>7 lj’m>7 J+[j’m>a J+J+U)m>7 }

Some entries in this infinite sequence may be the zero vector (as we will see).
However, as described above, all the nonzero entries have the same value of

J? and among the nonzero entries, each entry has a value of J, which is
exactly i more than the previous entry.

In this ladder, there can only be a finite number of nonzero entries, with infinite
copies of the zero vector on the left and right. The reason is, as mentioned

above, (J? — J2) is positive-semidefinite, so if any quantum state is an
eigenvector of both J? and J2, the former eigenvalue is larger. The states in
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the ladder all have the same J? eigenvalue, but going very far to the left or
the right, the J2? eigenvalue gets larger and larger. The only possible
resolution is, as mentioned, that there are only finitely many nonzero entries in
the ladder.

Now, consider the last nonzero entry to the right of the ladder, |4, Mmqz ). This
state has the property that J.; |4, Mmaz) = 0. As proven in the ladder operator
article,

Jilj,m) = /33 +1) = m(m+ 1)|j,m + 1)

If this is zero, then j(j + 1) = Mmax (Mmax + 1), 50 j=mor j=—m — 1
However, because J2 — J2 is positive-semidefinite, h2j(j+ 1) > (hm)?,
which means that the only possibility is mpax = J.

Similarly, consider the first nonzero entry on the left of the ladder, |, Mmin)-
This state has the property that J_ |j,mmin) = 0. As proven in the ladder
operator article,

J_lym) = By /(G +1) — m(m — 1)|j,m — 1)

As above, the only possibility is that mpi, = —J

Since m changes by 1 on each step of the ladder, (§ — (—j)) is an integer, so
jis an integer or half-integer (0 or 0.5 or 1 or 1.5...).

Since S and L have the same commutation relations as J, the same ladder analysis works for them.

The ladder-operator analysis does not explain one aspect of the quantization rules above: the fact that L
(unlike J and S) cannot have half-integer quantum numbers. This fact can be proven (at least in the
special case of one particle) by writing down every possible eigenfunction of L? and L,, (they are the
spherical harmonics), and seeing explicitly that none of them have half-integer quantum numbers.[1°] An
alternative derivation is below.

Visual interpretation

Since the angular momenta are quantum operators, they cannot be drawn as vectors like in classical
mechanics. Nevertheless, it is common to depict them heuristically in this way. Depicted on the right is a
set of states with quantum numbers £ = 2, and m, = —2,—1, 0, 1, 2 for the five cones from bottom to
top. Since |L| = v/L? = h4/B, the vectors are all shown with length fi+/6. The rings represent the fact
that L, is known with certainty, but L; and L, are unknown; therefore every classical vector with the

appropriate length and z-component is drawn, forming a cone. The expected value of the angular
momentum for a given ensemble of systems in the quantum state characterized by £ and m; could be
somewhere on this cone while it cannot be defined for a single system (since the components of L do not
commute with each other).

Quantization in macroscopic systems

The quantization rules are technically true even for macroscopic systems, like the angular momentum L
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of a spinning tire. However they have no observable effect. For
example, if L,/ is roughly 100000000, it makes essentially no

difference whether the precise value is an integer like
100000000 OT 100000001, or a non-integer like 100000000.2—
the discrete steps are too small to notice.

Angular momentum as the generator
of rotations

The most general and fundamental definition of angular
momentum is as the generator of rotations.!5] More specifically,
let R(#1, ¢) be a rotation operator, which rotates any quantum
state about axis 7 by angle ¢. As ¢ — 0, the operator R(#, ¢)
approaches the identity operator, because a rotation of 0° maps
all states to themselves. Then the angular momentum operator
J;; about axis 7 is defined as:[5!

[llustration of the vector model of orbital
angular momentum.

_ .. R@,¢)-1  OR(%,¢)
J _zh}sl_% 5 =ik 5

$=0

where 1 is the identity operator. Also notice that R is an additive morphism
R (%, ¢1 + ¢2) = R (1, ¢1) R (7, $2) ; as a consequenceld!

R (h, ) = exp (— i )

h

where exp is matrix exponential.

In simpler terms, the total angular momentum operator characterizes how a quantum system is changed
when it is rotated. The relationship between angular momentum operators and rotation operators is the
same as the relationship between Lie algebras and Lie groups in mathematics, as discussed further below.

Just as J is the generator for rotation operators, L and S are generators for modified partial rotation
operators. The operator

. ipL;,
Rspatial (TL, ¢) = €xp (_ B ),

rotates the position (in space) of all particles and fields, without rotating the internal (spin) state of any
particle. Likewise, the operator

R i$S;,
Rinternal (n, ¢) = €xXp (" B ) 3

rotates the internal (spin) state of all particles, without moving any particles or fields in space. The
relation J = L + S comes from:

R (ﬁ', ¢) = Rinternal ('ﬁ') ¢) Rspatia.l (ﬁ’ ¢)

i.e. if the positions are rotated, and then the internal states are rotated, then altogether the complete
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system has been rotated.

SU(2), SO(3), and 360° rotations

Although one might expect R (%, 360°) = 1 (a rotation of
360° is the identity operator), this is not assumed in l Bv" ‘

quantum mechanics, and it turns out it is often not true:

When the total angular momentum quantum number is a M — /(
half-integer (1/2, 3/2, etc.), R (f,360°) = —1, and when %@/ &

it is an integer, R (#, 360°) = +1.15] Mathematically, the J
structure of rotations in the universe is not SO(3), the
group of three-dimensional rotations in classical ~ The different types of rotation operators. The top
mechanics. Instead, it is SU(2), which is identical to SO(3) ~ DoX shows two paticles, with spin states

for small rotations, but where a 360° rotation is indicated schematically by the arrows.
mathematically distinguished from a rotation of 0°. (A A. The operator R, related to J, rotates

rotation of 720° is, however, the same as a rotation of the entire system.
0°.)[5]

B. The operator Rgpatiai, related to L,

On the other hand, Rgpatial (,360°) = +1 in all rotates the particle positions without

circumstances, because a 360° rotation of a spatial altering their internal spin states.

configuration is the same as no rotation at all. (This is  C. The operator Rinternals related to S,

different from a 360° rotation of the internal (spin) state rotates the particles' internal spin
of the particle, which might or might not be the same as states without changing their

no rotation at all.) In other words, the Rypatia1 Operators positions.

carry the structure of SO(3), while R and Ripternal carry

the structure of SU(2).

From the equation +1 = Repatial (2,360°) = exp(—2miL, /), one picks an eigenstate L, |¢) = mh|t)
and draws

e—2mm =1

which is to say that the orbital angular momentum quantum numbers can only be integers, not half-
integers.

Connection to representation theory

Starting with a certain quantum state |4 ), consider the set of states R (7, ¢) |1po) for all possible 72 and ¢
, i.e. the set of states that come about from rotating the starting state in every possible way. This is a
vector space, and therefore the manner in which the rotation operators map one state onto another is a
representation of the group of rotation operators.

When rotation operators act on quantum states, it forms a representation of the Lie group SU(2) (for
R and Rinternal), or SO(3) (for Rspatial)-

From the relation between J and rotation operators,

When angular momentum operators act on quantum states, it forms a representation of the Lie
algebra su(2) or so(3).

(The Lie algebras of SU(2) and SO(3) are identical.)
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The ladder operator derivation above is a method for classifying the representations of the Lie algebra
SU(2).

Connection to commutation relations

Classical rotations do not commute with each other: For example, rotating 1° about the x-axis then 1°
about the y-axis gives a slightly different overall rotation than rotating 1° about the y-axis then 1° about
the x-axis. By carefully analyzing this noncommutativity, the commutation relations of the angular
momentum operators can be derived.!5]

(This same calculational procedure is one way to answer the mathematical question "What is the Lie
algebra of the Lie groups SO(3) or SU(2)?")

Conservation of angular momentum

The Hamiltonian H represents the energy and dynamics of the system. In a spherically-symmetric
situation, the Hamiltonian is invariant under rotations:

RHR'=H

where R is a rotation operator. As a consequence, [H,R| =0, and then [H,J] =0 due to the
relationship between J and R. By the Ehrenfest theorem, it follows that J is conserved.

To summarize, if H is rotationally-invariant (spherically symmetric), then total angular momentum J is
conserved. This is an example of Noether's theorem.

If H is just the Hamiltonian for one particle, the total angular momentum of that one particle is conserved
when the particle is in a central potential (i.e., when the potential energy function depends only on |r]).
Alternatively, H may be the Hamiltonian of all particles and fields in the universe, and then H is always
rotationally-invariant, as the fundamental laws of physics of the universe are the same regardless of
orientation. This is the basis for saying conservation of angular momentum is a general principle of
physics.

For a particle without spin, J = L, so orbital angular momentum is conserved in the same circumstances.
When the spin is nonzero, the spin-orbit interaction allows angular momentum to transfer from L to S or
back. Therefore, L is not, on its own, conserved.

Angular momentum coupling

Often, two or more sorts of angular momentum interact with each other, so that angular momentum can
transfer from one to the other. For example, in spin-orbit coupling, angular momentum can transfer
between L and S, but only the total J = L + S is conserved. In another example, in an atom with two
electrons, each has its own angular momentum J; and J,, but only the total J = J, + J, is conserved.

In these situations, it is often useful to know the relationship between, on the one hand, states where
(N1),, (J1)?,(J2),,(J2)® all have definite values, and on the other hand, states where

(J1 )2, (J2 )2, J2, J, all have definite values, as the latter four are usually conserved (constants of motion).
The procedure to go back and forth between these bases is to use Clebsch—Gordan coefficients.

One important result in this field is that a relationship between the quantum numbers for

(J1)27 (J2)2’J2:
Xs 12




je{lsan — gzl (Jj1 — dol +1),..., (G +J2) }-

For an atom or molecule with J = L + S, the term symbol gives the quantum numbers associated with the
operators L?, S%, J2.

Orbital angular momentum in spherical coordinates

Angular momentum operators usually occur when solving a problem with spherical symmetry in
spherical coordinates. The angular momentum in the spatial representation is(11l12]

inh(51§0)3—¢—¢ )
= it (% (sin(9) 55 + cot(0) cos(@) 55 ) +7 —con(d) 3 + cor(®)sn(9) g %) ~*3)

9¢
L, = he' ( 9 + i cot(8) — )

00
; 0
= ke~
L_ =he (80+zcot(0) )

2 _ g2 1 1 &
Lr=-h (5111(0) 30( 2(0) 55 ) sin? (6) 3¢2)’

o)
L, = —ih—
zh6¢

In spherical coordinates the angular part of the Laplace operator can be expressed by the angular
momentum. This leads to the relation

108 (,0 2
A= (P 5) s

When solving to find eigenstates of the operator L?, we obtain the following

L2|l,m) = BRIl + 1)|I,m)
L,|l,m) = km|l,m)

where
<0’ ¢|l, m> = 1,l,'m (0, ¢)

are the spherical harmonics.[3!

See also

= Runge-Lenz vector (used to describe the shape and orientation of bodies in orbit)
= Holstein—Primakoff transformation

= Jordan map (Schwinger's bosonic model of angular momentum(14])

» Vector model of the atom

= Pauli-Lubanski pseudovector

» Angular momentum diagrams (quantum mechanics)




= Spherical basis

= Tensor operator

= Orbital magnetization

= Orbital angular momentum of free electrons
e Orbital angular momentum of light
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WIKIPEDIA

Ladder operator

In linear algebra (and its application to quantum mechanics), a raising or lowering
operator (collectively known as ladder operators) is an operator that increases or
decreases the eigenvalue of another operator. In quantum mechanics, the raising operator is
sometimes called the creation operator, and the lowering operator the annihilation operator.

Well-known applications of ladder operators in quantum mechanics are in the formalisms of
the quantum harmonic oscillator and angular momentum.

Contents

Terminology

General formulation

Angular momentum
Applications in atomic and molecular physics

Harmonic oscillator
History

See also
References

Terminology

There is some confusion regarding the relationship between the raising and lowering ladder
operators and the creation and annihilation operators commonly used in quantum field
theory. The creation operator a;' increments the number of particles in state i, while the
corresponding annihilation operator a; decrements the number of particles in state i. This
clearly satisfies the requirements of the above definition of a ladder operator: the
incrementing or decrementing of the eigenvalue of another operator (in this case the
particle number operator).

Confusion arises because the term ladder operator is typically used to describe an operator
that acts to increment or decrement a quantum number describing the state of a system. To
change the state of a particle with the creation/annihilation operators of QFT requires the
use of both an annihilation operator to remove a particle from the initial state and a creation
operator to add a particle to the final state.

The term "ladder operator” is also sometimes used in mathematics, in the context of the
theory of Lie algebras and in particular the affine Lie algebras, to describe the su(2)
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subalgebras, from which the root system and the highest welght modules can be constructed

raising operators; the rest of the pos1t1ve root space is obtained by repeatedly applying the
lowering operators (one set of ladder operators per subalgebra).

General formulation

Suppose that two operators X and N have the commutation relation,

[N, X] = X,

for some scalar c. If |») is an eigenstate of N with eigenvalue equation,
Nln) = nln),

then the operator X acts on |») in such a way as to shift the eigenvalue by c:

NX|n) = (XN + [N, X])|n)
= XN|n) + [N, X]|n)
= Xn|n) + cX|n)
= (n + ¢)X|n).

In other words, if |n) is an eigenstate of N with eigenvalue n then X|») is an eigenstate of N
with eigenvalue n + ¢ or it is zero. The operator X is a raising operator for N if c is real and
positive, and a lowering operator for N if c is real and negative.

If N is a Hermitian operator then ¢ must be real and the Hermitian adjoint of X obeys the
commutation relation:

[N, XT] = —eXT.

In particular, if X is a lowering operator for N then X" is a raising operator for N and vice
versa.

Angular momentum

A particular application of the ladder operator concept is found in the quantum mechanical
treatment of angular momentum. For a general angular momentum vector, J, with
components, Jy, Jy, and J, we define the two ladder operators, J, and J_: 2]

J+ == Jw + ’I:Jy,
J_ = J, —iJy,

where 1 is the imaginary unit.
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The commutation relation between the cartesian components of any angular momentum
operator is given by

[Ji, JJ] = iheijk.]k,

where g5y is the Levi-Civita symbol and each of 7, j and k can take any of the values x, y and
z. From this the commutation relations between the ladder operators and J, can easily be
obtained:

[y, Ju] = £hJy.
[Jy,J_] = 2RJ,.

The properties of the ladder operators can be determined by observing how they modify the
action of the J, operator on a given state:

JJeljm) = (Jed, + [Tz, I]) [im)
= (J:;:Jz + hJ:;:) |jm>
=h(m 1) JL|jm).

Compare this result with:
Jo|j(m £ 1)) = h(m £ 1)|j (m £ 1)).

Thus we conclude that J.|;jm) is some scalar multiplied by |j m=1),
Jiljm) = aljm+1),
J_|jm) = Bljm - 1).

This illustrates the defining feature of ladder operators in quantum mechanics: the
incrementing (or decrementing) of a quantum number, thus mapping one quantum state
onto another. This is the reason that they are often known as raising and lowering operators.

To obtain the values of a and 8 we first take the norm of each operator, recognizing that J,
and J_ are a Hermitian conjugate pair (J. =JJ;),

GmlJL T lim) = GmlJ_Jy|im) = (j(m+ )|a*alj(m+1)) = |af,

(Gm|ITI_|jm) = (jm|J.J_|jm) = (j (m — 1)|8*Blj (m — 1)) = |B]*.

The product of the ladder operators can be expressed in terms of the commuting pair J2 and
Iz

J_Jy = (Jp —idy)(Jp +idy) = J2 + JE +ilJs, Jy] = J? — JZ — hJ,,




Jod_ = (Jp +idy))(Jp —idy) = J2 + T2 —i[Jy, Jy] = J* — J2 + hJ..

Thus we can express the values of |a|? and |3|? in terms of the eigenvalues of J* and Jj,
la)? = A2j(+1) — B2m? — B2m = R2(j —m)(j + m + 1),
1B = B2j( + 1) — K2m? + B2m = K2(j +m)(j — m + 1).

The phases of a and 8 are not physically significant, thus they can be chosen to be positive
and real (Condon-Shortley phase convention). We then have:[3]

Jiljm) = By /(G = m)(G +m+ Dljm+1) = By /i + 1) = m(m + 1) jm + 1),

J_|jm) = By /G +m)(i —m+ Dljm —1) = Ay /3G + 1) = m(m — 1)|jm - 1).
Confirming that m is bounded by the value of j (—j<m<j) we have:

J+lig) =0,

T_1i(=) =o.

The above demonstration is effectively the construction of the Clebsch-Gordan coefficients.

Applications in atomic and molecular physics

Many terms in the Hamiltonians of atomic or molecular systems involve the scalar product
of angular momentum operators. An example is the magnetic dipole term in the hyperfine
Hamiltonian, !

Hp = AT-7J,

where I is the nuclear spin. Angular momentum algebra can often be simplified by recasting
it in the spherical basis. Using the notation of spherical tensor operators, the "-1", "0" and

"+1" components of JU = J are given by, 5!

J_
V2 V2
JW =,
1 J
IO = -~ (1, +iJ,) = - ==

V2 V2

From these definitions it can be shown that the above scalar product can be expanded as
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1) J(l Z( l)n I(l) J(l) Iill) J—(Fll) _ I-(}«ll) Jill)’

n=-—1

The significance of this expansion is that it clearly indicates which states are coupled by this
term in the Hamiltonian, that is those with quantum numbers differing by m; = +1 and m; =
Fionly.

Harmonic oscillator

Another application of the ladder operator concept is found in the quantum mechanical
treatment of the harmonic oscillator. We can define the lowering and raising operators as

mw [ . i,
“=\Vm ( * ;;,;;P)
\/ 9K mw

They provide a convenient means to extract energy eigenvalues without directly solving the
system's differential equation.

History

Many sources credit Dirac with the invention of ladder operators. [6] Dirac's use of the ladder
operators shows that the total angular momentum quantum number j needs to be a non-
negative half integer multiple of h.

See also

= Creation and annihilation operators
= Quantum harmonic oscillator
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