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4.2  Crystallographic symmelry operations 43

In crystailography, the types of crystallographic symmetry operations are
_gsignatcd by their Hermann—Mauguin symbols (Figs. 4.1 and 4.2). These
are:

« 1 for the identical mapping.

e T (‘one bar’) for the inversion.

« Rotations: A number N, N =2, 3, 4, 6. This corresponds to the order
of the rotation. If needed, the power of the rotation is mentioned; for
example, 671 = 6°, rotation by —60° = 300°.

e Screw rotations: N, designates a screw rotation consisting of a rotation
N coupled with a translation parallel to the axis of rotation by p/N of
the shortest lattice distance in this direction, The possible symbols are:
24 (‘two sub one’), 31, 32, 41, 45, 44, 61, 62, 63, 64, and 6s.

e Rotoinversions: 3, 4 and 6.

e Reflections: m (like mirror). m is identical to 2.

\“ I3

&
— ° -
R LN . . “*~ mirror plane
point of inversion
i m
glide plane
‘?‘1 a

4

L
5
2

axes of rotation

4 \ 4 i

s | 6 |

A

(= 3/m)

i |
Fig. 4.1 The effect of different symmetry operations on the point A (Chinese symbol for point, pronounced difin in Chinese, hoshee in Japanese).

The symmetry operations are designated by their Hermann-Mauguin symbols and by their graphical symbols.
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ir Hermann-Mauguin and graphical symbols. The axes 31,

L Fig. 4.2 The crystailographic screw axes with thei
‘ s direction is depicted.
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Cri
1
Dy
Chn
CNV
Dy
The point group symbol corresponding fo a space group can be obtained D
from the Hermann-Mauguin symbol in the following way: Nd
(1) the Jattice symbol is deleted (P, A, B, C, F,1orR);
(2) all screw components are deleted (the subscript ciphers are deleted); 0
h
(3) the letters for glide reflections (a, b,c,n. d, ¢) are replaced by m. 0
Examples: C2/c — 2/m Ty
P2fm2fn2i Ja (short Pmna) - 2/m2/m2/m (short mm m) T,
142d —~ 42m B B B T
I41/a32/d (short 1a3d) — 4/m32/m (short m3m) g
- Spec

6.3.2 Schoenflies symbols

ed 35 years before

Schoenflies symbols were develop ]
some of them have been slightl

symbols. Compared to their original form,

altered. :
ad of rotoinversions. A rotoreflection resull

Rotorefiections are used inste
from a coupling of a rotation with a reflection through a plane pel
{o the rotation axis. Rotoreflections and rotoinversions state identical facts,
the orders of their rotations differ in pairs if they are not divisible by 4:
rotoreflection (Schoenflies) S Sz Sy Se Sa
, . e N B - =5 52 =3
rotoinversion (Hermann—-Mauguin) 2=m 1 6 3 4

In Section 6.1.2 the space groups are assigned to crystal classes according
their point groups. SCHOENFLIES introduced symbols for these crystal clas

(point-group types) in the following way:
C; no symmetry.
C; acentre of inversion is the only symmetry element.
C, aplane of reflection is the only symmetry element.
Cy an N-fold rotation axis is the only symmetry element.
Sy an N-fold sotoreflection axis is the only symmetry element; only
is used; for symbols replacing §5 and Sg see the following. :
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' Cy; therels an N-fold rotation axis (N odd) and a centre of inversicn on
the axis. Identical to Sy with M =2 X N.
Dy thereare N twofold rotation axes perpendicular to an N-fold rotation
axis,
Cyp there is a vertical N-fold rotation axis and a horizontal reflection
plane. Cy;, is identical to S3. There is also an inversion centre if Nis
even.
Cy» an N-fold vertical rotation axis is situated at the intersection line of
N vertical reflection planes.
Dnp, there is an N-fold vertical rotation axis, N horizontal twofold ro-
tation axes, N vertical reflection planes, and a horizontal reflection
plane. There is also an inversion centre if N is even.
' Dyag an N-fold vertical rotation axis contains a 2N-fold rotoreflection axis
and N horizontal twofold axes have bisecting directions between N
vertical refiection planes. There is also an inversion centre it N is
odd. Identical to Sppy with M =2 X N.
O, symmetry of an octahedron and a cube.
O  as Oy without reflection planes (rotations of an octahedron).
T; symmetry ofa tetrahedron. :
T, symmetry of an octahedron with twofold instead of fourfold axes.
T as Ty and T}, without reflection planes (rotations of a tetrabedron).
Special non-crystallographic point groups:
I, symmetry of an icosahedron and pentagonal dodecahedron.
I as I, without reflection plages (rotations of an icosahedron).
C.y symmetry of acone.
D.., symmetry of a cylinder.

K, symmetry of a sphere.

The space-group types belonging to a crystal class were simply numbered
consecutively by SCHOENFLIES; they are distinguished by superscript num-

" bers. The sequence of the crystal classes has not always been kept the same in

the space-group tables. Since 1952 the space-group types have been numbered
in International Tables from 1 to 230, with the consequence that this sequence

" can hardly be changed.

Some Schoenflies symbols are compared with the corresponding Hermann--

Mauguin symbols in Table 6.4 .

Schoenflies space-group symbols have the advantage that they designate the
space-group types in a unique way and independent of the selection (sefting)
of a basis. They have the disadvantage that they only give direct information
about the point-group symmetry. They lack information about the lattice type,
which is expressed only indirectly by the superscript number.

Schoenflies symbols are concise, but contain less information than Hermann—
Mauguin symbols. Schoenflies symbols continue to be very popular in spec-
troscopy, quantum chemistry, and to designate the symmetry of molecules. In
crystallography they are hardly used anymore.

6.3 Space-group symbols 75
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The primitive cell of a crystal is uniquely specified by these
values (up to an arbitrary rotation), and crystallographic ar-
ticles report the structures in this form.

3. Crystal Systems, Lattices, Space Groups and Stan-
dard Lattice Vectors

Having defined what we mean by a lattice, we now dis-
cuss the possible lattices that can exist in a three dimen-
sional space, and some of their properties. Here we define
our terms following Lax [37], paraphrasing his discussion.

1. A Crystal is a periodic array of physical objects. In
this article we discuss crystals made of periodic arrays
of atoms and their associated electrons.

2. A Crystal Structure is the complete description of the
crystal including its periodic structure and the contents
of the unit cell. In our case, we obtain a complete
description of the crystal by specifying the primitive
vectors of the periodic lattice a;, (i = 1,2,3) and the
positions B;, (j = 1,2,3,...,N) of the N atoms in a
unit cell, The ground state electronic charge density, if
desired, can then be computed from these atomic posi-
tions.

3. A Space Group is the set of all operations (translations,
rotations, and reflections) that restore a crystal to itself.
In three dimensional space there are 230 space groups.

4. A Crystal Class is the point group of the crystal. This
includes all possible rotations and reflections (but not
translations) that leave the shape of the crystal un-
changed. This does not mean that the crystal is trans-
formed into itself, only the point group. In three di-
mensions there are 32 crystal classes.

5. A Bravais Lattice is a collection of points
{tia; +hap + 3 a3}, (15)

where the #; are integers and the a; are not co-planar,
i.e. the volume (6) is non-zero. Equation (4) allows
some freedom in the choice of a;, but all choices lead
to the same points for a given Bravais lattice. In three
dimensions a given crystal class has at least one and a
maximum of four Bravais lattices.

6. The holohedry of a Bravais lattice is the point group
that describes its rotational symmetry.

7. A Crystal System is the set of all Bravais lattices that
have the same holohedry. In three dimensions there are
seven crystal systems, many of which contain multiple
Bravais lattices.

In 1891 E. S. Federov [38] and A. Schonflies [39] deter-
mined the 230 space groups allowed in three dimensions.
Wyckoff [40] tabulated all of these groups, and determined

the special atomic coordinates (the Wyckoff positions) al-
lowed for each space group. Here we briefly describe the
properties of each crystal system and its associated Bravais
lattices, and list the space groups associated with each lat-
tice. In general we will start with the lowest symmetry and
go to increasingly higher symmetries. Each space group
will be labeled by the International symbol associated with
its standard orientation as defined in the International Ta-
bles [16]. Alternative orientations of the space groups will
lead to different labels. Cockeroft [41] has a complete list
of these online.

In the following, we will frequently refer to conventional
lattices and primitive, or Bravais, lattices. The basic defi-
nition of a Bravais lattice is that it describes the periodicity
of a particular system. A conventional lattice, on the other
hand, describes the holohedry of all of the Bravais lattices
in a given crystal system. Each crystal system has a Bravais
lattice that is identical with the conventional lattice.

A A
A,
A A
A, T
b
A A l

Figure 1: A two-dimensional rectangular system, with primitive vectors
A, and A, given by (16). The solid lines denote the edges of the unit
cell.

This is most easily seen in two dimensions. Figure 1
shows a rectangular periodic structure. The periodicity can
be described by the primitive vectors

A] = %
A, = b¥. (16)

The solid lines mark the edges of the unit cell for this sys-
tem.

Next consider the structure shown in Figure 2. It can
obviously be described as a periodic structure with primi-
tive vectors (16) and a unit cell bounded by the solid lines.
However, it can also be described by the primitive vectors

o
|
[P

a =

an

P
4=
‘:4)

a. =

R IR
[SSRR~ol o
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These primitive vectors are shown in Figure 2, and the
unit cells associated with these vectors are bounded by the
dashed lines.

Both of these structures have the same holohedry, belong-
ing to the two-dimensional rectangular crystal system. They
have different Bravais lattices. We can call these lattices
simple rectangular, shown in Figure 1, and centered rectan-
gular, shown in Figure 2.’

Figure 2: A two-dimensional centered rectangular system, with primi-
tive vectors a; and a, given by 17. The dashed lines denote the edges
of the primitive unit cell, while the solid lines denote the edges of the
conventional unit cell.

Both the holohedry and translational symmetry of these
structures can be described by the vectors (16), although the
centered cell has another translation. Equations (16) then
define the conventional unit cell for the two-dimensional
rectangular crystal system.,

The area of the conventional Bravais lattice, ab, is twice
that of the centered Bravais lattice, as can be seen from Fig-
ure 2, which also shows that the conventional lattice has
twice as many triangles (atoms) per unit cell as the Bravais
lattice. In three dimensions, as we will see, the conventional
lattice can hold one, two, three or four times as many atoms
as the underlying Bravais lattice.

Going back to three dimensions, standard crystallo-
graphic practice is to report the lattice parameters (g, b, c,
@, B, y) of (13-14) using the conventional lattice, rather than
the Bravais lattice. While this may seem arbitrary, the prim-
itive vectors

a = a
_a b .
a = 5

describe Figure 2 just as well as (17), but have different
lengths and angles, and there are a multitude of other possi-
ble sets. There is, however, only one logical way to describe

3This is called a centered lattice because the primitive vectors (17)
point to the center of the rectangular unit cell.

the conventional cell, (16). This happens in three dimen-
sions as well. As a general rule, (a, b, ¢, a, B, v), and
even the number of atoms in a unit cell, are given for the
conventional lattice. The size of the primitive cell has to be
inferred from knowledge of the space group.

We now consider the seven crystal systems, including the
Bravais lattice, and the space groups associated with each
Bravais lattice,

As noted above, there are an infinite number of choices
for a set of primitive vectors describing a unit cell. In gen-
eral we follow the choices made by Setyawan and Curtarolo
[42]. Differences occur in the monoclinic, base-centered or-
thorhombic, and rhombohedral lattices, and are discussed in
the footnotes.

4. The Triclinic Crystal System

The triclinic is the most general crystal system. All of the
other crystal systems can be considered special cases of the
triclinic. The primitive vectors are also completely general:
their lengths (a, b, c) and angles (a, 8, v) may have arbitrary
values. The triclinic system has one Bravais lattice, which
is also the conventional lattice for this system.

Figure 3: The conventional and simple unit cells for the triclinic crystal
system.

4.1. Lattice 1: Triclinic

There are many choices for the primitive vectors in the
triclinic system. We make the choice

a = a X
a = bcosyR+bsinyy
a3 = X+ V+ci, (18)
where
¢x = ccosf
c(cosa — cosf3 cosy)
Gy = -
4 siny

*The one exception to this rule is the rhombohedral lattice, which we

shall discuss below. _
XX
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and

et == cl.

The volume of the triclinic unit cell is

V=abc, sinvy. (19)

c; =

The space groups associated with the triclinic lattice are
given in Table 1.

Table 1: The space groups associated with the triclinic Bravais lattice
(18) are

|1 p1]2 PT|

5. The Monoclinic Crystal System

In the monoclinic crystal system, the conventional unit
cell is defined by primitive vectors of arbitrary length,
where one of the vectors is perpendicular to the other two.
Modern convention chooses this vector to be the one with
length b (or “unique axis b” in the literature), so that @ =
y=n/2and B # n/2.°

Ay

Figure 4: The conventional, simple, and base-centered unit cells for the
monoclinic crystal system.

The conventional unit cell can be described by the vectors

A] = af
Ay = by
As = ccosBX+csinfi, (20)

and the volume of a conventional unit cell is

V=abc sing. 21)

*Note that this orientation differs from that of Setyawan and Cur-
tarolo [42], who used an unique axis “a” setting. Their angle & would be
7 in our notation.

5.1. Lattice 2: Simple Monoclinic
The simple monoclinic cell is identical to the conven-
tional cell. Its primitive vectors are identical to (20)

a = aX
a = bf’
a3 = ccosfBX+csinfi, (22)

and the cell volume is just
V =abc sing. (23)

The space groups associated with the simple monoclinic
lattice are given in Table 2.

Table 2: The space groups associated with the simple monoclinic Bravais
lattice (22) are

3. P2 4, P2 6. Pm
7. Pc 10. P2/m | 11. P2;/m
13. P2/c | 14, P2;/c

5.2. Lattice 3: Base-Centered Monoclinic

The base-centered monoclinic lattice is in the same crys-
tal system as the monoclinic lattice, but its periodicity al-
lows an additional translation in the plane defined by a; and
ap, much as in (17). The primitive vectors for the base-
centered monoclinic lattice can be written

a, P
a = EX—EY
B o= 2xils
2 2
a3 = ccosfBX+csinfi. (24)

The volume of the base-centered monoclinic unit cell is
V= (%) abc sing, (25)

half that of the conventional unit cell.

The space groups associated with the base-centered mon-
oclinic lattice are given in Table 3. The labels for these
space groups all begin with C, indicating the base-centered
translation associated with these groups. This differs from
the labels for space groups in Table 1 and Table 2, which
begin with P, indicating that the primitive lattice is the con-
ventional lattice.

The International Tables offer two representations of the
base-centered monoclinic space groups, one for “unique
axis b” and one for “unique axis ¢,” where @ # /2 and
B = /2. Space group 5 is then listed as “B2” or “C2” de-
pending on this choice. Most authors ignore this distinction,
as will we.

Table 3: The space groups associated with the base-centered monoclinic
Bravais lattice (24) are

8. Cm 9. Cc
15, €2f¢

3. €2
12. C2/m

KK D
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6. The Orthorhombic Crystal System

In the orthorhombic system, the conventional unit cell is
a parallelepiped, defined by three mutually orthogonal vec-
tors of unequal length:

Al = axy
Ay = by
Az = ci, (26)

sothata # b # ¢, but @ = =y = x/2. It is a limiting case
of the conventional monoclinic crystal with 8 — m/2. The
volume of the conventional unit cell is

V=abc. 27)

There are four Bravais lattices in the orthorhombic system.

oP

Figure 5: The conventional, simple, face-centered, base-centered, and
body-centered unit cells for the orthorhombic crystal system.

6.1. Lattice 4: Simple Orthorhombic
The simple orthorhombic Bravais lattice is identical to
the conventional cell

a = X
a = by
a = Ci, (28)

with volume
V=uabe. (29)
The space groups associated with the simple orthorhom-
bic lattice are given in Table 4.

Table 4: The space groups associated with the simple orthorhombic lat-
tice (28) are

16. P222 17. P222, | 18. P2,2,2
19. P21242, | 25. Pmm2 | 26. Pmc2,
27. Pec2 28, Pma2 | 29. Pca2;
30. Pnc2 31. Pmn2; | 32. Pba2
33. Pna2, 34, Pnn2 47. Pmmm
48. Pnnn 49. Pccm | 50. Pban
51. Pmma 52. Pnna 53. Pmna
54. Pcca 55. Pbam | 56. Pccn
57. Pbcm 58. Pnnm | 59. Pmmn
60. Pbcn 61l. Pbca 62. Pnma

6.2. Lattice 5: Base-Centered Orthorhombic

Like the base-centered monoclinic lattice, the base-
centered orthorhombic system allows a translation in one
of the base planes. Unfortunately, the standard plane cho-
sen depends on the space group, as shown in Table 5. Space
groups beginning with C put the translation in the a — b
plane, that is, the plane defined by A and A, (26). In this
case the primitive vectors can be taken to be

a = Ei—é)ﬂf
2 2
a, b,
a = §x+5y
a3 = ciZ. (30)

Space groups beginning with A put the translation in the
b — ¢ plane, defined by A; and A3. We use the primitive
vectors®

a = ax
a = by Ci
2 = g¥73
b c
= —§+-3. 31
a3 F¥+52 (3D

In both cases the volume of the primitive unit cell is

abc
V=—. 32
2 (32)
There are two primitive base-centered orthorhombic unit

cells in the conventional orthorhombic unit cell.

8QOrientation (31) is not used by Setyawan and Curtarolo [42], who
only considered centering in the “C” plane defined by a, and a;. A
simple rotation brings the vectors into agreement.
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Table 5; The space groups associated with the base-centered orthorhom-
bic lattice. Space groups beginning with C place the base-translation in
the @ — b plane and use primitive vectors (30), while space groups begin-
ning with A put the translation in the b — ¢ plane and use the primitive
vectors {31).

20, C222; |21, C222 |35 Cmml2
36, Cmc2y | 37. Cec2 | 38. Amm2
39, Abm2 | 40. Ama2 | 41. Aba2
63. Cmem | 64. Cmca | 65. Cmmm
66. Ccem | 67. Cmma | 68. Ceca

6.3. Lattice 6: Body-Centered Orthorhombic

The body-centered orthorhombic lattice has the same
point group and translational symmetry as the simple or-
thorhombic system, with the addition of a translation to the
center of the parallelepiped defined by the vectors (26). Our
standard form of the primitive vectors is

an = a +b,\+c
T TR R¥Ts
A = 2% é‘-{-gi
R TR
a. b, c,
a = -2-X+§y EZ. (33)

The volume of the primitive body-centered orthorhombic

unit cell is

abce
= —, 34
v=2 34

There are two primitive body-centered orthorhombic unit
cells in the conventional orthorhombic unit cell. The space
groups associated with this lattice, all of which begin with
I in standard notation, are given in Table 6.

Table 6: The space groups asscciated with the body-centered orthorhom-
bic lattice (33).

23, 1222 |24, I2;2,2; | 44. Imm2
45. Iba? i 46. Ima2 71, Immm
72, Ibgm | 73. Ibca 74. Imma

6.4, Lattice 7: Face-Centered Orthorhombic

‘While the base-centered monoclinic lattice allows trans-
fations to one base plane, the face-centered orthorhombic
lattice allows translations to any of the base planes. Our
standard choice for the primitive vectors of this system are
given by

b, c.
a = §y+§z (35)
a.,. C.
a = §x+22 (36)
a; = §i+§y. (37

The volume of the primitive face-centered orthorhombic

unit cell is
abc

V=T, (38)

so that there are four primitive body-centered orthorhombic
unit cells in the conventional orthorhombic unit cell. The
space groups associated with this lattice, all of which begin
with F in standard notation, are given in Table 7.

Table 7: The space groups associated with the face-centered orthorhom-
bic lattice (37).

22, F222 43. Fdd2

69. Fmmm

42, Fmm?2
70. Fddd

7. The Tetragonal Crystal System

In the tetragonal system, like the orthorhombic, the con-
ventional unit cell is a parallelepiped, but two sides are
equal, so that g = band ¢ # @, whileaw = 8 = y = n/2,
and this is a special case of the orthorhombic system. The
primitive vectors of the conventional unit cell are

A1 = af¥
Ay = a¥
o A3 = 2 (39)
The volume of -the_ cn'_):n'yéntional unit cell is
vV=dc (40)

Given the similarity between the tetragonal and orthorhom-
bic crystal system, we might expect that the tetragonal sys-
tem would have four Bravais lattices as well, but the addi-
tional symmetry generated because b = a reduces this to
two. When & — a, the base-centered orthorhombic Bravais
lattice (3(}) becomes a snnple tetragonal lattice, while the
face-centered orl:horhombm__la_ttice (37) can be shown to be
identical to a body-centered tetragonal cell {43].

7.1. Lattice 8: Simple Tetragonal .-

The simple tetragonal Bravais lattice is identical to the
conventional cell

a = aX
a = a¥
a; = c#, 41)
with volume
V=dec (42)

The space groups associated with the simple tetragonal
lattice are given in Table 8.
X0




S14

Table 8: The space groups associated with the simple tetragonal lattice

41).
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75. P4 76. P4, 77. P4,

78. Pdj 81. P4 83. P4/m
84. Pdr/m 85. P4/n 86. Pdy/n
89. P422 90. P42,2 91. P4,22
92. P4,2,2 93, P4,22 94, P4,2,2
95. P4422 96. P452,2 99. Pdmm
100. P4bm 101. Pdzem 102. P4ynm
103. Picc 104. Pdnc 105. Pdame
106. Pdzbe 111. P42m 112. P42c
113. P42ym | 114. P42;c 115. P4m2
116. P4c2 117. P42 118. P4n2
123, P4/mmm | 124. Pd/mcc 125. P4/nbm
126. P4/nnc 127. P4/mbm | 128. Pd/mnc
129. P4d/nmm | 130. P4/ncec 131. P4y /mme
132. Pdy/mcm | 133. P4y /nbc 134. Pdo/nnm
135. Pdy/mbe | 136. Pdy/mnm | 137. Pdy/nmc
138. P4, /ncm

system, with the addition of a translation to the center of
the parallelepiped defined by the vectors (39). Our standard
form of the primitive vectors is

a = ——R+2§+S3
S S A
a, a, ¢,
a = EX_Ey-l-Ez
a a C
a3 = —X+-§--% =
3 2Xt3Y-512 (43)

The volume of the primitive body-centered tetragonal unit

cell is

a2€

VZT.

There are two primitive body-centered tetragonal unit cells
in the conventional tetragonal unit cell. The space groups
associated with this lattice, all of which begin with / in stan-
dard notation, are given in Table 9.

(44)

Table 9: The space groups associated with the body-centered tetragonal
lattice (43).

79. 14 80. I4, 82, I4

87. I4/m 88. I4,/a 97. 1422
98. 14,22 107. I4mm | 108. I4cm
109. I4ymd | 110. Idyed | 119. [4m2
120. I4c2 121. I42m 122. 1424
139. I4/mmm | 140. I[4/mcm | 141. I4,/amd
142, I4,/acd

Figure 6: The conventional, simple, and body-centered unit cells for the
tetragonal crystal system.

7.2. Lattice 9: Body-Centered Tetragonal

The body-centered tetragonal system has the same point
group and translational symmetry as the simple tetragonal

8. The Trigonal Crystal System

The trigonal crystal system is defined by a three-fold ro-
tation axis, and can be generated from the cubic crystal sys-
tem (Section 10) by stretching the cube along its diagonal.
The symmetry requires the primitive vectors to have the
forma = b, @ = B = n/2, y = 120°.7 The trigonal system
is a limiting case of the simple monoclinic Bravais lattice
(22), with 8 = 120°. It can also be obtained from the base-
centered orthorhombic Bravais lattice (30) with & = V3a.
The conventional unit cell is described by the vectors

a, Y8 .
A[ = EX—TG}’
a, V3 .
A2 = §x+7ay
A3 = ci. (45)

There are two Bravais lattices in the trigonal system.

"We could take y = 60°, but in that case the three-fold rotation axis
is not obvious from the primitive vectors.
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Figure 7: The conventional, simple (hexagonal), and rhombohedral unit
cells for the trigonal crystal system.

8.1. Lattice 10: Hexagonal

Somewhat confusingly, what might be called the simple
trigonal Bravais lattice is known as the hexagonal lattice. It
shares the same primitive vectors, but not point operations,
as the hexagonal crystal system (9). The primitive vectors
are identical to those of the conventional cell,

— fg_ﬁa*
L= 3 ) y
a = E)’k+£a"
2 = 3 5 y
8y, = Chs (46)
The volume of the primitive cell is
3
V= (%] Pe. 47

The space groups associated with the (trigonal) hexago-
nal lattice are given in Table 10.

Table 10: The space groups associated with the (trigonal) hexagonal lat-
tice (46).

143. P3 144, P3; 145. P3,

147. P3 149. P312 | 150. P321
151. P3;12 | 152. P3;21 | 153. P3,12
154. P3,21 | 156. P3ml | 157. P31m
158. P3cl | 159. P3lc | 162. P3lm

163. P3lc | 164. P3ml | 165. P3cl

8.2. Lattice 11: Rhombohedral

The rhombohedral Bravais lattice has the periodicity of
the conventional trigonal cell (45), with the addition of two
translation vectors, 2/3A; + 1/3A, + 1/3A3 and 1/3A; +
2/3A2 + 2/3A3.

The primitive vectors can be taken in the form

" o
a = —%- y+-2
2 (2@) 3
a g B
2= T .
V3 3
a a C
a3 = ——X- y+ -2, (48)
2 (2@) 3

and the volume of the primitive cell is one-third that of the
conventional cell,

2 ) 2
V=|—]a c. (49)
(\/5
The vectors (48) are all of identical length,
a2 2,
= = = — a4 —= 0
lai| = |az| = |as] 3 tg =4 (50)

or, equivalently, @ = b = ¢ = a’, where we designate the
common length as a’ to distinguish it from the length of the
first two vectors in the conventional lattice. The vectors also
make equal angles with each other

2¢% - 3a®
2(c?+3a?))

Equations (50) and (51) provide another definition of the
rhombohedral lattice. We can show this by writing the prim-

itive vectors in a form that depends only on the common
length and separation angle,®

a:=,6':y=cos’1( (51)

sin § %
sin§ §
+J%(4cosz%—l)i
o (2/V3) sin§ §
e %(40032%—1)2

~=sin§ &
a3 = d —(%] dngy . | (52)

+1/%(40032%— I)i

We can define the rhombohedral lattice in two ways: as a
trigonal lattice with additional translational vectors, or as a

8 An alternative orientation is given by Setyawan and Curtarolo [42],
who only give the primitive vectors in this (a’, @) setting. The primi-
tive vectors used for their rhombohedral cell (section A.11) differ from
(52) only by the orientation of the vectors relative to the Cartesian axes.
Their choice is simpler for computational purposes, but does not show

the relationship between (48) and (52).
XX\
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“simple” lattice with equal primitive vectors making equal
angles with one another. The International Tables addresses
this ambiguity by listing atomic positions for the rhombo-
hedral lattice in a “hexagonal setting,” where all coordinates
are referenced to the conventional cell (45), and in a “rhom-
bohedral setting,” where the coordinates are referenced to
(52). To further confuse matters, the unit cell’s dimensions
might be reported in terms of (a, ¢) from (45), or in terms
of (', @) from (52). An article might say that there were N
atoms in the rhombohedral cell, or 3N atoms in the conven-
tional cell. One has to pay attention to the context.

In the database, we will report the lattice parameters of
the system by giving a and ¢, since that is the usual crys-
tallographic practice. However, we will record atomic posi-
tions using the primitive vectors (48), since computer calcu-
lations work best with the smallest number of atoms needed
to describe the system.

The space groups associated with the rhombohedral lat-
tice are given in Table 11.

Table 11: The space groups associated with the rhombohedral lattice
(48).

146. R3 | 148. R3 | 155. R32
160. R3m | 161. R3c | 166. R3m
167. R3c

9. The Hexagonal Crystal System

The hexagonal crystal system has a six-fold rotation axis.
There is only one Bravais lattice in this system, the hexag-
onal Bravais lattice given by (45) and (46), so the conven-
tional and primitive lattices are equivalent.

The space groups associated with the hexagonal crystal
system and lattice are given in Table 12.

Table 12: The space groups associated with the hexagonal crystal system
and lattice.

168. P6 169. PO 170. P6s

171. P6; 172. P64 173. P63

174. P6 175. P6/m 176. P63/m
177. P622 178. P6,22 179. P6522
180. P6222 181. Po6422 182. P6322
183. P6bmm 184. Pé6ec 185. P6scm
186. P6ymc | 187. P6m2 188. PG6c2
189. P62m 190. P62c 191. P&/mmm
192. P6/mcc | 193. P6s/mcm | 194. P63/mmc

10. The Cubic Crystal System

The cubic crystal system is defined as having the sym-
metry of a cube: the conventional unit cell can be rotated

by 90° about any axis, or by 180° around an axis running
through the center of two opposing cube edges, or by 120°
around a body diagonal, and retain the same shape. The
conventional cell then takes the form

A| = aR
A2 = a ?
Az = ai, (53)
with unit cell volume
V=a (54)

This is the limiting case of both the orthorhombic (26) and
tetragonal (39) systems when all primitive vectors are equal
in length. There are three Bravais lattices in the cubic sys-
tem.

Figure 8: The conventional, simple, face-centered, and and body-
centered unit cells for the cubic crystal system.,

10.1. Lattice 12: Simple Cubic

The simple cubic system is identical to the conventional
cubic unit cell

a = X
42, = y
a3 = ai, (55)

AKX
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with volume
V=d. (56)

This can also be considered as a rhombohedral lattice (48)
with & = nr/2. The space groups associated with this lattice
are given in Table 3.

Tabte 13: The space groups associated with the simple cubic lattice (55).

195. P23 | 198. P2;3 | 200. Pm3
201. Pn3 | 205. Pa3 | 207. P432
208. P4,32 | 212, P4432 | 213, P4)32
215. P43m | 218. P43n | 221. Pm3m
222. Pn3n | 223. Pm3n | 224. Pn3m

10.2. Laitice 13: Face-Centered Cubic

The face-centered cubic lattice can be derived from iis
predecessors in the orthorhombic and tetragonal systems,
having the same periodicity as its simple cubic parent with
the addition of a translation from one corner of the cube
to the center of any face. Qur standard face-centered cubic
primitive vectors have the form

a, a,
a = —2-y+ 22 (57
a, a,
a = %+ (58)
a = SR+, (59)
and the primitive cell volume is
3
a
V= T (60)

There are four face-centered cubic primitive cells in the con-
ventional cubic cell. The face-centered cubic lattice can be
considered as a rhombohedral lattice where @ = 60°. The
space groups associated with this lattice are given in Ta-
ble 14.

Table 14: The space groups associated with the face-centered cubic lat-
tice (57).

196. F23 | 202. Fm3 | 203, Fd3
209. F432 | 210. F4,32 | 216, F43m
219. F43c | 225. Fm3m | 226. Fm3c
227. Fd3m | 228. Fd3c

10.3. Lattice 14: Body-Centered Cubic

Like its predecessors in the orthorhombic and tetragonal
systems, the body-centered cubic crystal has the same peri-

odicity as its parent with the addition of a translation from
one corner of the cube to its center. Our standard body-
centered cubic primitive vectors have the forim

a, a, a,
a = m5x+§y+-2—z (61)
a, a, a,
4 = Ex—§y+2z (62)
a, a, 4a,
a3 = §x+§y-zz, (63)
and the primiiive cell volume is
3
a
V—wz—. (64)

There are two body-centered cubic primitive cells in the
conventional cubic cell. The body-centered cubic lattice
can be considered as a thombohedral lattice where o =
cos~1(=1/3) ~ 109.47°. The space groups associated with
this lattice are given in Table 15.

Table 15: The space groups associated with the body-centered cubic lat-
tice (61).

197. 123 | 199, 123 | 204, Im3
206. [a3 | 211. 1432 | 214. 4432
217. I43m | 220. 143d | 229. Im3m
230. Ia3d

11. Locating the atoms in the unit cell

Section 3 describes the Bravais lattices that occur in three
dimensional space. Just describing the lattice, however,
does not describe the complete crystal system. We must also
find the positions of the atoms in the primitive (or conven-
tional) unit cell. These positions are restricted by the crystal
system, Bravais lattice, and space group that the system is
in.

We will illustrate this using our two-dimensional cen-
tered rectangular lattice (7). There are seventeen plane
groups in two dimensions [44]. Two are centered rectan-
gular plane groups, clml (#5) and c2mm (#9). If we look at
the International Tables [14] or Bilbao server [17], we will
find a table that fooks much like Table 16.

Table 16: The Wyckoff positions for the plane group c1m1 (#5). This is
a somewhat simplified version of the table, as we neglect the site sym-
metries of each point. See Refs. [16] and [17] for complete information.

Wyckoff Position | Coordinates +(1/2,1/2)
(4b) (X>Y) ('X’ Y)
(2a) (O,y)

This table gives a set of Wyckofl positions, so called be-
cause Wyckoff denoted all possible positions for the 230

PO







International Tables for Crystallography (2006). Vol. A, Chapter 1.4, pp. 7-11.
1.4. Graphical symbols for symmetry elements in one, two and three dimensions

By TH. HAHN

1.4.1. Symmmetry planes normal to the plane of projection (three dimensions) and symmetry lines in the plane of the
figure (two dimensions)

Glide vector in units of lattice translation
vectors paralle] and normal to the projection

‘Axial” glide plane }
Glide line (two dimensions}

‘Axial’ glide piane TTTPTTTPIeTN

‘Double’ glide plane* (in centred cells only) [ somweesmer=n
‘Diagonat’ glideplane 1 = —_

‘Diamond’ glide planct (pair of planes; in centred cells e
onty)

—— - —

Symmetry plane or symmetry line Graphical symbol plane Printed symbol
Reflection plane, mirror plane Note -
Refiection line, mirror line {two dimensions)

%lattice vector along line in projection plane
%larticc vector aleng ling in figure plane

% lattice vector normal to projection plane
Two glide vectors:

along line parallel to projection plane and
% normal to projection plane

=

One glide vector with fwo compenents:
% along line parallel to projection plane,
3 normal to projection plane

ﬁ along line parallel to projection plane,
combined with 41 normal to projection plane
(arrow indicates direction parallel to the
projection piane for which the nermal
component is positive)

a, borc

a, borc

* For further explanations of the ‘double” glide plane e see Note (iv) below and Note {x) in Seetion 1.3.2,

T See footnote § to Section 1.3.1.

1.4.2. Symmetry planes parallel to the plane of projection

Symmetry plane Graphical symbol*

Qlide vector in units of lattice translation vectors
parallel to the projection plane . - - =

Printed symbol

Reflection plane, mirror plane . § | /
‘Axial’ glide plane 1——‘ I—*

‘Double’ glide planet (in centred cells only) r

‘Diagonal’ glide plane {T
‘Diamond’ glide planci (pair of planes; in centred
cells only) ’ 3| |‘;
[ 131

None

1 fattice vector in the direction of the arow

Two glide vectors:
% in either of the directions of the two arrows

One glide vector with fwp components
3 in the direction of the arrow

%in the direction of the arrow; the glide vector is
always half of a centring vector, i.e. one quarter
of a diagenal of the conventional face-centred
cell

mn

a,borc

n

*The symbols are given at the upper left comer of the space-group diagrams, A fraction k attached to a symbol indicates two symmetry planes with ‘heights’ & and b +}
above the plane of prajection; e.g. § stands for b — § and §. No fraction means # = 0 and { (¢f. Section 2.2.6).
T For further explanations of the ‘double’ glide plane e see Note (iv) below and Note (x) in Section 1.3.2,

1 See footnote § to Section 1.3.1,

7

Copyright © 2006 International Union of Crystallography

MY S




1. SYMBOLS AND TERMS USED IN THIS VOLUME

1.4.3. Symmetry planes inclined to the plane of projection (in cubic space groups of classes 43 and m3m only)

Glide vector in units of lattice translation vectors for planes
Graphical symbol* for planes normal to | normal to .
— — - - Printed
Symmetry plane {011] and {0I1] [101] and {101] [011] and [011] [1017 and {101} symbol
Reflection plane, mirror None None m
plane
‘Axial’ glide plane 1 lattice vector along {100] 1 lattice vector along [010]
aorb
‘Axial’ glide plane 1 lattice vector along (017} or | 4 lattice vector along {101}
along [011] or along [101]
‘Double’ glide planet [in Twe glide vectors: Twe glide vectors: e
space groups [43m (217) % along F100] and %along {010] and
and In3m (229) only] ?along {011] or ?along (101} or
7 along [01]1] 5 along [101]
‘Diagonal” glide plane One glide vector: One glide vector: n
1 along [111] or Lalong {111} or
along [111]3 along [111]%
Jalong [111] or 1 along [I11] or
atong [111]§ along {111]§
‘Diamond’ glide planef d
{pair of planes; in
centred cells only) - —
{along {111j or 1 along [T11] or
along [111]§ along [111]§

* The symbols represent orthographic projections. In the cubic space-group diagrams, complete orthographic projections of the symmetry elements around high-symmetry

points, such as 0,0,0;1,0,0; 1, 1,0, are given as ‘inserts’.

7 For further explanations of the *double’ glide plane e see Note (iv) below and Note (x) in Section 1.3.2, B
% 1n the space groups Fd3m (216), Fn3m (225) and Fdl3m (227), the shortest lattice translation vectors in the glide directions arc t(1, §,4) or (1, 4, 1) and t¢, £,1) or

t(3, 1, 1), respectively.

1202

§ The glide vector is half of a centring vector, i.e. one guarter of the diagonal of the conventional body-centred cell in space groups 434 (220) and fa3d (230).

T See footnote § to Section 1.3.1.

1.4.4. Notes on graphical symbols of symmetry planes

(1) The graphical symbols and their explanations (columns 2 and
3) are independent of the projection direction and the labelling of
the basis vectors. They are, therefore, applicable to any projection
diagram of a space group. The printed symbols of glide planes
(column 4}, however, may change with a change of the basis
vectors, as shown by the following example. _

In the rhombohedral space groups R3¢ (161) and R3¢ (167), the
dotted line refers to a ¢ glide when described with ‘hexagonal axes’
and projected along [001); for a description with ‘rhombohedral
axes’ and projection along [111], the same dotted glide plane would
be called n. The dash-dotted » glide in the hexagonal description
becomes an a, b or ¢ glide in the thombohedral description; ¢f.
footnote 1 to Section 1.3.1,

(ii) The graphical symbols for glide planes in column 2 are not

only used for the glide planes defined in Chapter 1.3, but also for the
further glide planes g which are mentioned in Section 1.3.2 (Note
x) and listed in Table 4.3.2.1; they are explained in Sections 2.2.9
and 11.1.2.

(iii} In monoclinic space groups, the ‘parallel’ glide vector of a
glide plane may be along a lattice translation vector which is
inclined to the projection plane,

(iv) In 1992, the Intemational Union of Crystallography
introduced the ‘double’ glide plane e and the graphical symbol
«+—u~ for e glide planes oriented ‘normal’ and ‘inclined’ to the
plane of projection (de Wolff er al,, 1992); for details of ¢ glide
planes see Chapter 1.3. Note that the graphical symbol [~ for e glide
planes oriented ‘parallel’ to the projection plane has already been
used in fT (1935) and IT (1952).



1.4. GRAPHICAL SYMBOLS FOR SYMMETRY ELEMENTS

1.4.5. Symimetry axes normal to the plane of projection and symmetry points in the plane of the figure

Screw vector of a right-handed screw rotation Printed symbol (partial
Graphical in units of the shortest lattice translation vector | elements in

Symuneiry axis or symmetry point symbol* parallel to the axis parentheses)
Identity None None 1
Twolold rotation axis None 2
Twofold rotation point (two dimensicns) ‘
Twofold screw axis; ‘2 sub 1’ ‘ 3 2,
Threefold rotation axis
Threefold rotation point (swo dimensions) } A None 3
Threefold screw axis: 3 sub {” ,L 1 3
Threefold screw axis: ‘3 sub 2’ A i 3,
Fourfold rotation axis 10
Fourfold rotation point (two dimensions} 4 N None @
Fourfold screw axis: ‘4 sub 1’ /Q’ _i_ i 4y (21}
Fourfold screw axis: ‘4 sub 2 § i % 4 (2)
Fourfold screw axis: ‘4 sub 3 \§\ “h' 3 45 (2))
Sixfold rotation axis }
Sixfold rotation point (two dimensions) ® Nane 643.2)
Sixfold screw axis: ‘6 sub 1* 'i’ i 61 (31,21)
Sixfold screw axis: ‘6 sub 2’ D’ i 62 {32,2)
Sixfold screw axis: ‘6 sub 3 , 1 63 {3,2;)
Sixfold screw axis: ‘6 sub 47 ﬁ % 64 {31,2)
Sixfold screw axis: ‘6 sub 5* "!‘ 3 65 {32,21)
Centre of symmetry, inversion centre: ‘1 bar -

. . . . . ; e Nene 1
Reflection point, mirror point (one dimension)
Inversion axis: 3 bar’ A None 330
Inversion axis: ‘4 bar’ P None 4(2)
Inversion axis: ‘6 bar’ & None 6=3/m
Twofold rotation axis with centre of symmetry ° None 2/m (1)
Twofold screw axis with centre of symmetry § i 21 /m (1)
Fourfold rotation axis with cenire of symmetry 2.3 ] None 4/m{4,2,1)
‘4 sub 27 screw axis with cenire of symmetry é o i 4 /ar (4,2,1)
Sixfold rotation axis with centre of symmetry 0 None 6/m (6,3,3,2,1)
‘6 sub 3’ screw axis with centre of symmetry § 1 61/m (6,3,3,2,, 1)

#Notes on the ‘heights’ i of symmetry points i,3,4and 6:

(1) Centres of symmetry 1 and 3, as well as mversmn points 4 and & on 4 and 6 axes parallel to [001], occur in pairs at ‘heights’ i and 2t + 3. 1 n the space-group diagrams,
only one fraction / is given, e.g. 5 dstands for h = =3 and 3. No fraction means i = Qand . L In cubic space groups, however, because of thelr complexity, both fractions are

given for vertical 4 axes, including /t = 0 and 3.

(2) Symmetries 4/m and 6/m contain vertical 4 and & axas; their 4 and & inversion points coincide with the centres of symmetry. This is not indicated in the space-group

diagrams.

(3) Symmetries 4;/m and 63/m also contam verncal 4 and 6 axes, but their 4 and 6 inversion points alternate with the centres of symmetry; ie. 1 pointsath and h +3 3
interleave with 4 or & points at & +3 Land h + In the tetragonal and hexaoonal space—crroup diagrams, only one fraction for 1 and one for 4 or 6 is given. In the cubic
diagrams, all four fractions are hstcd for 4, /m e.g. Podn (No, 223): 1

. ;j_v
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1. SYMBOLS AND TERMS USED IN THIS VOLUME
1.4.6. Symmetry axes parallel fo the plane of projection

Symmetry axis

Graphical symbol*

Screw vector of a right-handed screw
rotation in units of the shortest latiice
ranslation vecior parallel to the axis

Printed symbol
(partial elentents
in parentheses)

Twofold rotation axis
Twofold screw axis; ‘2 sub 1”
Fourfold rotation axis
Fourfold screw axis: ‘4 sub [’
Fourfold screw axis: ‘4 sub 2’
Fourfold screw axis: ‘4 sub 3’

Inversion axis: ‘4 bar’

Inversion point on ‘4 bar’-axis

}
1

P

FTRMR e
= w wa W

4&

S o S L e
in cubic space groups only

2 A AN~

&

None

1
2z

MNone

£l

[XTN

NI

None

4 (21)
&(2)

4 point

* The symbols for horizontal symmetry axes are given outside the unit cetl of the space-group diagrams, Twofo.'d axes always occlr in pairs, at *heights’ % and A + above
the plane of projection; here, a fraction & attached to such a symbol indicates two axes with heights # and £ + No fraction stands for A = 0 and 3. ¥ The rule of pa1rw1se
occurrence, however, is not valid for the horizontal fourfold axes in cubic space groups; here, alf heights are gwen, including h = 0 and L. This app!les also to the horizontal
4 axes and the 4 inversion points located on these axes.

1.4.7. Symmetry axes inclined to the plane of projection (in cubic space groups only)

Symmetry axis

Graphical symbol*

Screw vector of a right-handed screw
rotation in units of the shortest lattice
translation vector parallel to the axis

Printed symbol
{partial elemenis
in parentheses)

Twofold rotation axis

Twofold screw axis: “2 sub 17

Threefold rotation axis

Threefold screw axis: *3 sub 1°

Threefold screw axis: ‘3 sub 2’

Invergion axis: ‘3 bar*

40
¥

X
X
X

\

LY

KM

| Parallel to a face

diagonal of the cube

Parallel to a body
diagonal of the cube

None

I

None

L

Mone

2

2,

3

* The dots mark the intersection points of axes with the plane at /t = 0. In some cases, the intersection points are obscured by symbols of symmetry efements with height
h > 0; examples: Fd3 (203), origin ehoice 2; Pnln (222), origin choice 2; Pm3n (223); In3m (229Y; Ia3d (230).

10

MM,




2. GUIDE TO THE USE OF THE SPACE-GROUP TABLES

(3) The short international (Hermann—Mauguin) symbol for the
point group to which the plane or space group belongs (¢f
Chapter 12.1).

(4) The name of the crystal system (cf. Table 2.1.2.1).

Second line

(5) The sequential nwmber of the plane or space group, as
introduced in #7 (1952),

(6) The full international (Hermann—-Mauguin) symbol for the plane
Or space group.

For monoclinic space groups, the headline of every
description contains the full symbol appropriate fto that
description.

(7) The Patterson symmetry (see Section 2.2.5).

Third line

Thig line is used, where appropriate, to indicate origin choices,
settings, cell choices and coordinate axes (see Section 2.2.2). For
five orthorhombic space groups, an entry ‘Former space-group
symbol’ is given; ¢f Chapter 1.3, Note (x).

2.2.4. International (Hermann-Mauguain) symbols for
plane groups and space groups (¢f. Chapter 12.2)

2.2.4.1. Present symbols

Both the short and the full Hermann-Mauguin symbols consist of
two parts: (i) a letter indicating the centring type of the conventional
cell, and (ii) a set of characters indicating symmetry elements of the
space group {modified point-group symbol).

(i) The letters for the centring types of cells are listed in Chapter
1.2. Lower-case letters are used for two dimensions (nets), capital
Ietters for three dimensions (lattices).

(ii) The one, two or three entries after the centring letter refer to
the one, two or three kinds of symmetry directions of the lattice
belonging to the space group. These symmetry directions were
called blickrichtungen by Heesch (1929). Symmetry directions
occur either as singular directions (as in the monoclinic and
orthorhombic crystal systems) or as sets of symmetrically
equivalent symmetry directions (as in the higher-symmetrical
crystal systems). Only one representative of each set is required.
The (sets of) symmetry directions and their sequence for the
different lattices are summarized in Table 2.2.4.1. According to
their position in this sequence, the symmetry directions are referred
to as ‘primary’, ‘secondary’ and ‘tertiary’ directions.

This sequence of lattice symmetry directions is transferred to the
sequence of positions in the corresponding Hermann-Maugnin
space-group symbols. Each position contains one or two characters
designating symmetry elements (axes and planes) of the space
group {¢f Chapter 1.3) that occur for the corresponding lattice
symmetry direction. Symmetry planes are represented by their
normals; if a symmetry axis and a normal to a symmetry plane are
parallel, the two characters (symmetry symbols) are separated by a
slash, as in P63 /m or P2/m (‘two over m’).

For the different crystal lattices, the Hermann-Mauguin space-
group symbols have the following form:

(i) Triclinic lattices have no symmetry direction because they
have, in addition to translations, only centres of symmetry, 1. Thus,
only two triclinic space groups, P1 (1) and P1 (2), exist.

(i) Monoclinic lattices have one symmetry direction. Thus, for
monoclinic space groups, only one position after the centring letter
is needed. This is used in the shors Hermann-Mauguin symbols, as
in P2,. Conventionally, the symmetry direction is labelled either b
(‘unique axis b") or ¢ (‘unique axis ¢’).

In order to distinguish between the different settings, the full
Hermann—Mauguin symbol contains two extra entries ‘17, They
indicate those two axial directions that are not symmetry directions

18

Table 2.2.4.1. Lattice symmetry directions for two and three
dimensions

Directions that belong to the same set of equivalent symmetry directions are
collected between braces. The first entry in each set is taken as the
representative of that set.

Symmetry direction (position in Hermann—
Mauguin symbol)
Lattice Primary Secondary Testiary
Twa dimensions
Oblique Rotation
- point
Rectangular in plane £10] [01]
Square {10} [
{01] f11]
Hexagonal [10] 1)
[o1] 17
] pij
Three dimensions
Triclinic None !
Monoclinic* [010] (‘fumique axis &)
[001] (*unique axis ¢’}
Orthorhombic " [100] [010] FO01]
Tetragonal [001] [100] [110}
fo10] {110}
Hexagonal [001] [100] [110]
{010] [120]
{110} [210]
Rhombohedral fo01] {100]
(hexagonal axes) [010]
[110]
Rhombohedral f1i1] [11{_)]
(rhombohedral axes) [011]
[101]
Cubic [100] [111] [110] [110]
[o10] [1T1} [011] [o11]
[0o]] [117) [to1] (101}
[t}

# For the full Hermann-Mauguin symbols see Section 2.2.4.1.

of the lattice, Thus, the symbols P121, P112 and P21 show that the
b axis, ¢ axis and @ axis, respectively, is the unique axis. Similar
considerations apply to the three rectangular plane groups pm, pg
and em (e.g. plane group No, 5: short symbol cmi, full symbol clml
or ¢1lm).

(iiiy Rhombohedral lattices have two kinds of symmetry
directions. Thus, the symbols of the seven rhombohedral space
groups contain only two entries after the letter R, as in R3m or R3c.

(iv) Orthorhombic, tetragonal, hexagonal and cubic lattices have

three kinds of symmetry directions. Hence, the corresponding
space-group symbols have three entries after the centring letter, as
in Pmna, P3ml, Pbec or la3d.
Lattice symmetry directions that carry no symmetry elements for
the space group under consideration are represented by the symbol
1’, asin P3mt and P31m, If no misinterpretation is possible, entries
‘1 at the end of a space-group symbol are omitted, as in P6 (instead
of P611), R3 (instead of R31), /4, (instead of 74111}, F23 (instead
of F231}); similarly for the plane groups.

XX A




HOETIEUINED | IRES 1O LTYSIauyrapily (LUJ0). YUL A, Jpace Yyivup 14, pp. ro49—I121.

<‘)}) 21 / C gh <j‘>2 /m ®Monoclinic
@ No. 14 Pl 2,/61 @ Patterson symmetry P12/m

UNIQUE AXIS b, CELL CHOICE 1

i | |
oy T 1
d ° f B :
/ I ! |
9 = =
L I
af_ 4
r / }
:\h bo\\o\\\/
(%) | J ]
f]j --------------------------------- O+ o+
| o %+o %+O
-------------------- o G%_ Qiz‘-
o -------- -® _O
O\\O\‘“\‘_
J I ; S O+
i ’J
i 1

@ Origin at
Y Asymmetricunit 0<x<1: 0<y<l 0<z<l
i y

Symmetry operations

@ (1 (2) 2(0,3,0) 0,3z 31 000 @ ¢ xiz

YO
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CONTINUED No. 14 P2,/c

-,
@ Generators selected  (1); #(1,0,0); #(0,1,0); #(0,0,1); (2); (3) -
\:} Positions T
. Multiplicity, Coordinates Reflectiofi conditions
Wyckoff letter,
Site symmetry General:
4 e 1 (1) x,y,z Q) xy+2,2+: 3 x5,z @) x,3+35,2+3 hOL: [=2n
OkO0: k=2n
00l : I=2n

Special: as above, plus

2 d 1 £,0,4 L1D BRI k- l=2n
2 ¢ 1 0,0,% 0,4,0 Akl » k+1=2n
2 b I %)O:O %7%7“;' hkl - k+l:2n
2 a 1 0,0,0 0,1,4 Wkl k+1=2n
Symmetry of special projections
Along [001] p2gm Along [100] p2gg Along [010] p2
a=a, b=hb a=b b=e¢, a'=ic b'=a
_ Originat0,0,z Origin at x,0,0 Originat 0,30
{Q; Maximal non-isomorphic subgroups
I R2IPlct{Pc,T) I; 4
[2irP12,1(P2,4) 1;2
(21 PT(2) 1; 3
Ha none
IIb none

v Maximal isomorphic subgroups of fowest index
Me  [2]P12/cl(a =2aor® =2a,¢ =2a+c)(P2, /e, 14);, 31 P12 /el (W =3Db)(P2,/c, 14)

@ Minimal non-isomorphic supergroups
I [2] Prna(52); [21 Pmna(53); 2] Pcca (34); [2]1 Pham (53); [2] Pecn (56); [2] Pbem (57); [2]1 Panm (58); {2] Pbon (60);
[21 Pbca(61); [2] Pnma (62), [2]1 Cmce (64) '
11 [21A12/mE{C2/m, 12); [21C12/c1(C2/c, 15 [2H 12/c1(C2/c, 15)%; [2]1 P12, /m1 (¢ = 1¢) (P2 /m, 11);
[21P12/cl (b = ib)(P2/ec, 13)

SO
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5
P 21 / C Cgh 2/m Monoclinic
No. 14

UNIQUE AXIS b, DIFFERENT CELL CHOICES

P12,/cl

UNIQUE AXIS b, CELL CHOICE 1

Origin at |
Asymmetric unit 0<x<1; 0<y<l 0<z<l

Generators selected  (1); 1(1,0,0); #{0,1,0); £(0,0,1); (2); (3)

Positions
Multiplicity, Coordinates Reflection conditions
Wyckoff letter,
Site symmetry Generai:
4 e 1 (1} x, 3z @ zy+i,z+4 (3} %72 @ xy+szt+i HOL: 1 =2n
Ok k=2n
00 : {=12n
Special: as above, plus
2 4 1 1,0, 1,50 hkl @ k+1=2n
2 ¢ 1 0,0,4 0,50 hid + k+1=2n
2 b 1 £,0,0 3404 Bkl : k-+1=2n
2 a 1 0,0,0 0,5, hiki : k+1=2n

XX2 2
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No. 14

CONTINUED

P12,/n1

UNIQUE AXIS b, CELL CHOICE 2

Origin at T
Asymmetricunit 0<x<1; 0<y<i 0<£z<1

Generators selected (1); £{1,0,0); #(0,1,0); £(0,0,1); (2); {3}

Positions

Multiplicity, Coordinates

Wyckoff letter,

Site symmetry

4 e 1 TN xyz D F+iyts2+Hh 3y x%,5,z @ x+55+5z+3

2 d 1 10,0 0,41
2 c 1 %:0:% 01%!0
2 b 1 0,0,4 51,0
2 a T O:O)O %)%)%
P12,/al

UNIQUE AXIS b, CELL CHOICE 3

Origin at 1

Asymmetricunit 0<x<l; 0<y<i; 0<z<!

Generators selected  (1); £(1,0,0); £(0,1,0); £(0,0,1}% (2% (3)

Positions

Muitiplicity,
Wiyckoff letter,
Site symmetry

Coordinates

4 e | (1) x3z 2y i+iy+42 (3)%,3,% #) x4 5,7+ 1.2
2 d 1 0,0,3 1401
2 ¢ 1 10,0 0,4,0
2 b 1 £,0,4 0,51
2 a 1 0,0,0 110

187

P2,/c

Reflection conditions

General:

ROl h+1=2n

0kO: k=72n

h0O: h=12n

00l : [=2n

Special: as above, plus
hikl 1 h+k+1="2n
Bkl . h+k+1="2n
Rkl . ht+k+1=2n

hil : h+k+1=2n

Reflection conditions

General:

hl: h=12n

OkO: k=2n

h00: h=2n

Special: as above, plus
hkl 0 h+k=2n

hkl : h+k=2n

hkl @ h+k=12n

hkl : h+k=2n

AN LD




5 . .
P 21 / C Czk 2/m Monoclinic
No. 14 Pl1 21 /a Patterson symmetry P112/m
UNIQUE AXIS ¢, CELL CHOICE 1
1
1 o b o P
[a] [+ 0 Q ' o T 23
/ / , |
' ' ¢ B I
ol o c! [+] I o | [+)
/ / | |
/ / f — | I e
aOI o] OI Q ] Q I 06
1
N i
/ | Fl
co‘*‘—‘-__\
R -® -®
.................................. O+ O+
1 o +O 0
Q
............... Q%_ O%_
[T - ®
0 \‘—‘O
/ R—— O+ o-
) { &
3 ) /
i
Origin at
Asymmetric unit 0<x<1, 0<y<1y 0<z< !
Symmetry operations
(31 (2) 2(0,0,3) 1,0,z (3) 1 0,0,0 4 a x,y;

188
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CONTINUED

Generators selected (1}; 7(1,0,0); £(0,1,0}; #(0,0,1); (2); (
Positions

Muitiplicity, Coordinates

Wyckoff letter,

Site symmetry

4 e 1 D xpz (2 E+3,02+ 4 (3 x5,z
2 d 1 3,7,0 0,5,1

2 ¢ i $,0,0 0,0,

2 b 1 0,1,0 13z

2 a 1 0,0,0 40,1

Symmetry of special projections
Along [001] p2

a=ia b=Dh

Origin at 0,0,z

Along [100} p2gm
a'=bh, b=c
Origin at x,0,0

Maximal non-isomorphic subgroups

I [2iPI1a(Pe, D i; 4
2IP112 (P2,4) 1;2
[21P1(2) 1, 3

IIa none

Hb  none

Maximal isomorphic subgroups of lowest index
I1c

Minimal non-isomorphic supergroups

No. 14

@) x+3,3,2+3

P2,/c

Reflection conditions

Ger_leral:

kO h=2n
00f : 1==2n
h00: h=2n
Special: as above, plus
il @ h+1=2n
hikl @ h-+1=2n
hkl : h+1=2n

hkl : h+1=2n

Along [010] p2gg

a=c

L—
b'=a,

Origin at 0,y,0

[21P112,/a(®'=2bora’ =a-2b,b =2b}(P2,/c, 14); [31P112,/a(c =3¢)(P2,/c, 14)

I [2} Pnna(52); (21 Pmna(53); [21 Pcca (54, [2] Pbam (35); [2] Pcen (56), 21 Pbcem (57); [2] Pnnm (58); [2] Pbcon (60);

(2} Pbca(61); 21 Prma (62); [2) Cmce(64)

O [214112/a(C2/e,15% [21B112/m(C2/m, 12); [211112/a(C2/c, 15);, [21 P112,/m(a' = La) (P2, /m, 11);

[21P112/a(¢ = tc) (P2/c, 13)
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5
P 21 / C Cgh 2/m Monoclinic
No. 14

UNIQUE AXIS ¢, DIFFERENT CELL CHOICES

i f—

Ny

P112,/a

UNIQUE AXIS ¢, CELL CHOICE 1

Origin at 1

z<

Bl

Asymmetric unit 0<x<1; 0<y<1; O

IA

Generators selected (1); r(1,0,0); £(0,1,0); £(0,0,1); (2); (3)

Positions
Multiplicity, Coordinates Reflection conditions
Wyckoff letier,
Site symmetry General:
4 e 1 1) x,y,z (2) F+4,7,2+1% (3) £,7.2 @) x+i,y7+1 HkO b= 2n
00/ : {=2n
hOG: h=2n
Special: as above, plus
2 d 1 ERY 0,44 Wkl : h+1=2n
2 ¢ 1 1,0,0 0,0,+ hkl © h+1=12n
2 b I 0,%,0 %:%}% hkl h+l:2?1
2 a 1 0,0,0 1,03 hikl : h+1=12n

R
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No. 14

CONTINUED

P112,/n

UNIQUE AXIS ¢, CELL CHOICE 2

Origin at 1
Asymmetricunit 0<x<1; 0<yp<l; 0<z<!
Generators selected  {1); #(1,0,0); £{0,1,0); £(0,0,1); (2% (3)

Positions

Multiplicity,
Wryckoff letter,

Coordinates

Site symietry

4 e 1 (1) %3,z @) x5+ 52+ 3 33,2 @ x+1y+ 5+
2 d 1 0,:,0 $,0,1

2 c -I %:%10 0)01%

2 b 1 30,0 0,13

2 a 1 0,0,0 13,4

P112,/b

UNIQUE AXIS ¢, CELL CHOICE 3

Origin at 1
Asymmetric unit 0<x<l; 0<y<l; 0<z<:

Generators selected (1) £(1,0,0); £(0,1,0); £(0,0,1); (2); (3)

Positions

Multiplicity, Coordinates

Wiyckoff letter,

Site symmetry

4 e I (D x,2 @) x5,7+5z2+3 (3 %3,z M xy+1,2+1
2 d 1 1,0,0 T

2 ¢ 1 0,4{,0 0,0,

2 b T % > %1 O '11101 "13

2 a 1 0,0,0 0,54

191

P2, /c

Reflection conditions

General:

RO h+k=12n

00 : 1=2n

hOO: h=2n

0k0: k=2n

Special: as above, plus
hkl © h+k+1=2n
hkl : h+k+1=2n
hkl © h+k+1=72n

hkl : h4+k+1=2n

Reflection conditions

General:

heQ: k=2n

00! : [=2n

0k0: k=12n

Special: as above, plus
Rkl - k+1=2n

hkl © k+1=2n

Rkl @ k+4-1=2n

hkl : k+1=2n

XX 1




HOE GAUQIE [ QUIES 10 W YSIaiuyrapiiy (LUvo). VUL, A, DPace Yroup 19, Dp. 192=199.

6
C?2 / C Co 2/m Monoclinic
No. 15 C1 2/C 1 Patterson symmetry C12 /m 1

UNIQUE AXIS b, CELL CHOICE 1

% 0 a =Ly (=)
© o o or—o Q) 0——0 o
/ H i / | | I I }
I A T R e
[ . i 0
(o] Oi Q Oa [s] (s} —it O o] =i Q (=]
/ / | 1 | | l
. ’ . ’ . —h‘—‘—: ] } | :—--—-—-—-N
1 1 o
s ot o ol c{ <'3 '“""I‘ '!~ _‘“l ‘.!JU
iy
f f N i 1
r 3
Oreunn.,
b ......... Oreannn.., r 1
""" o -® RO -
~Om
anal TN O+ O%"’ O+
Orennn,..
........ Ovenn +( %+O +O
----- o
— o- or Jo
---0-.-_
L. © o o
OJ .......... Orrnnn
l -------- o O+ O%+ O+
A A A
LA ]
4 I
F]
Origin at 1 on glide plane ¢
Asymmetyric unit 0<x<!l, 0<y<) 0<z<l
Symmetry operations
For (0,0,0)+ set
(1 (2) 2 0,34 @1 0,00 4 c x0,z
For (3,3,0)+ set
(1 1(5,3,9) 2) 2(0,5,0) {33 @31 550 4 n(4,0,1) x4z

HKA LD
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CONTINUED

Generators selected (1), £{1,0,0); £(0,1,0}; £{0,0,1}; £(3,5,0); (21 (3)

Positions
Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates

8§ £ 1 (1) x,»,z ) &y,i+3
4 e 2 0,y 3 0,71
4 d 1 L L0
4 ¢ 1 40 N
4 b 1 0,:,0 0,44
4 g 1 0,0,0 0,0,4

H

Symmetry of special projections
Along [001] c2mm

a=a b'=h a=1b
Origin at 0,0,z

Maximal non-isomorphic subgroups

3 43,2

(0,0,00+ (5,5,0)+

Along [100] p2gm

P
b'=c,

Origin at x,0,0

I [21C1eci(Ce9) (L; 4)+
[21C121(C2, 5) (1 2)+
[21C1(PL, 2) (1 3)+

Ia [2}P12]/n1{P21/c, 4y 13 (2; 4+ (4,5,0)
R1P12,/c1(P2,/c,14)  1; 4 (2; 3)+(4,4,0)
[21P12/c1 (P2/c, 13) 1: 2; 3; 4
21P12/n1(P2/c,13) 13 2; (3; 4)+(},1,0)

IIb none

Maximal isomorphic subgroups of lowest index

Hc  [3]C12/cl (0 =3b)(C2/c, 15); [31C12/e1 (¢ = 3€) (C2/e, 15);
[31C12/cl(a =3aora =3a,¢ = ~a-tcora’ =3a,¢ =a+¢c)(C2/c 15)

Minimal non-isomorphic supergroups

(4) x,5,2+}

No. 15

Reflection conditions

General:

Bl 2 htk=2n
ROL @ R =2n
Okl . k=2n
RO R4 k=2n
OkO: k=2n
hOO: h=12n
00f : | =2n

C2/c

Special: as above, plus

1o extra conditions
Chkl: k+I=2n

hikl » k+I=2n

Rkl : I1=2n

Rkl I=2n

Along [010] p2

a=jc b = ia

1=

Origin at 0,y,0

I (21 Cmem (63); [21Cmce (64); {2] Ceem (66); [2] Cece (68); [2] Fddd (T0), [211bam (72); [21 Thca (73), (2] mma (T4),
[2114,/a(88% [31 P31 (163): [31P3c1(165); [31R3c(167)

1¥ 21 F12/m1{C2/m, 12); [2]C12/m] (¢ = {e){(C2/m, 12}, 2] P12/c] (& = ja,b' = {b) (P2/c, 13)
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C2 / C th 2/m Monoclinic
No. 15

UNIQUE AXIS b, DIFFERENT CELL CHOICES

C12/c1

UNIQUE AXIS b, CELL CHOICE 1

Origin at T on glide plane ¢

Asymmetricunit 0<x<i; 0<y<y 0

A
IA
s

Z

-

Generators selected  (1}; #(1,0,0); #(0,1,0); #(0,0,1); #(3,1,0); (2); (3)

Positions
Multiplicity, Coordinates Reflection conditions
Wryckoff letter, D
Site symmetry 0,000+ (550+ General:
8 5 1 ) x,yz () E,vi+1 3)%.7.Z 4) x, 5,2+ 4 hkl @ h4k=2n 0kO: k=2n
hOI © hi=2n ROO: h=12n
Okl : k=2n 000 : I=12n
hkQ: h+k=2n
Special: as above, plus
4 e 2 0,33 0,93 no extra conditions
4 4 1 ) 3,1,0 4 ¢ 1 41,0 35 hikl : k+1=2n
4 b 1 0,1,0 0,1,% 4 a 1 0,0,0 0,0, Akl 1 1=2n
HAXDHQ
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CONTINUED No. 15
Al2/n1
UNIQUE AXIS b, CELL CHOICE 2

Origin at I on glide plane »
Asymmetricunit 0<x<i; 0<y<l; 0zt

Generators selected (1) #(1,0,0); £(0,1,0); £(0,0,1); £{0,4,4); (2); (3)

Positions

Multiplicity, Coordinates

Wyckoff letter, L

Site symmetry (0,0,0)+ (0,5, )+

8 f 1 W x,z (Y E+1.0I+1 (3) %7,z OFESNELT: hkl
h0l
Okl
hkQ

4 € 2 )i %7?,%

4 d 1 %ﬂ}’% 0}41}% 4 c T 0)%!% %7%‘)'4!’

4 b 1 0,3,0 33,7 4 a 1 0,0,0 1,0,3

112/al

UNIQUE AXIS b, CELL CHOICE 3

Origin at 1 on glide plane &

Asymmetriconit 0<x<1; 0<y<y 0Lz

Generatiors selected  (1); £(1,0,0); #(0,1,0); ¢(0,0,1); £{3,4.4); (2% (3)

Positions

Multiplicity, Coordinates

Wyckoff letter, .

Site symmetry 0,0,00+ (4,%,5)+

8 f 1 (1 xwz 2y £+ 1,02 (3 %7z @ xt1,¥z hkl
hOl
Okl
hkQ

4 e 2 750 i,5,0

4 d 1 N Liid 4 ¢ 1 Hhini L

4 b 1 0,1,0 $.3,0 4 a 1 0,0,0 1,0,0

195

C2/c

Reflection conditions

General:
k+1=2n Ok0: k=2n
: hil=2n h0: h=2n
s ktHl=12n 00l . I=2n
c k=2n

Special: as above, plus
no extra conditions
hil - h=2n

Rkl : h+k=2n

Reflection conditions

General:

htk+l=2rn OkO: k=2n

s hi=2n AOO: h=2n
sk l=2n 00! : I=2n
cht+k=2n

Special: as above, plus
no extra conditions
hil : 1=2n

hkl : h=2n

TR




HUHSTHAUUITE 1 SUHES 1OF Wl ySEIUGIapiny \&Uuo ). UL A, SPave gruup o4, PR. o7 =21 3.

6
P 42 21 2 D4 4272 Tetragonal
No. 94 P42 21 2 Patterson symmeiry P4/mmm
1 | l oy
1 3 O O
N/ t A% t Ny .0 Ne)
r's A O+ O+
P 1 O %+ O
4 et § = =
O
N\ / Of-
P ' 1A Fo
- o _ O .
4 4 O %J,- O
‘\ / +( +O
/.\ | /‘\ | /‘\ O+ O+
! | O O
Originat222at212
Asymmetricunit 0<x<{; 0<y<}; 0<z<}
Symmetry operations
(1 (2) 2 0,0,z (3) 4*(0,0,3) 0,3,z (4) 4°(0,0,7) 3.0,z

(6) 2(3,0,0) x,4,4 M2 xx0

() 2(0,:,0) &3
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CONTINUED No. 94 P4,2,2

Generators selected  (1); #(1,0,0); #(0,1,0); #0,0,1% (2); (3); (5)

Positions
Multiplicity, Coordinates Reflection conditions
Wyckoff letter,
Site symmetry General:
8 g 1 (Dxyz (2) £,3,2 BG)F+ixtizty @y+rnitha+is 000 I=2n
() X+ 3y + 5,245 @O x+Li+LI+E Dyt ®) 75,2 hO0: b =2n
Special: as_above, plus
4 F ..2 x,x, 4 x5 I+4,x+4,0 x+ 4,5+ 1,0 Okl : k+1=2n
4 e .2 x,x,0 %0 I+ sx+i4 x5 5 45,4 Okl : k+1=2n
4 4 2.. 0,1,z 0,4,2+1 £,0,24 3 1.0, hid : 1=2n
hEO: h+k=2n
4 ¢ 2. 0,0,z Liz+t 112+ 0,0,7 BEl : htkt1=2n
2 b 2.22 0,0,1 5,50 hikl @ h+k+I=2n
2 a 2.22 0,0,0 LN bl : h+k+1=2n
Symmetry of special projections
Along [001] p4gm Along [100] p2mg Along [110] p2Zmm
a=a b=>b a=h b=¢ a=ji(—a+b) b=c¢
Origin at 0,4,z Origin at x, 1,3 Origin at x, x,0

Maximal non-isomorphic subgroups

I 21P4,11(P4,,77) 1;
[21P212(C222,21) L
[21P22,1(P2,2,2,18) 1

IIa  none

Ib  [2]P4,2,2(c¢ =2¢)(96); [2] P4,2, 2 (¢ = 2¢)(92)

23, 4
2,7 8
2,5, 6

i

Maximal isomorphic subgroups of lowest index
He  [31P4,22(c=3c)(94); [91 P4,2,2 (2’ = 3a,b = 3b) (94)

Minimal non-isomorphic supergroups
I (2] P4,/mbc(135); [2] P4, /mam{136); [2]1 P4,/nmc (137), [2] P4, /ncm (138)
1I (2]1C4,22(P4,22,93); [211422(97); [2) P42,2 (¢ = ;&) (90)

XKKED
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HHSTHRUOUIIEE 1 3INeS 1UT LT YSIaNUHTapnY \£UU0}. Y UL A, DPave JIQup 149, P 439207 .

4
R3 C3 3 Trigonal
No. 146 R3 Patterson symmetry R 3
HEXAGONAL AXES
3+
O
0%+
1+
/ \ o 9 %+O
" Of+ 2+ O+
+ +
i O O O @)
A i+ o+ i+ O+
+ +
/ \l 5 o b i o
A O+ / + O+ / +
X / i+
O
YT
+ +
O O
1
A -A A— ‘ C+ 3+ O+
O O
¥ ¥
Origin on 3
Asymmetricunit 0<x<3 0<y<} 0<z<h x<(14+y)/2 y<min(l—x,(l+x)/2)
Vertices  0,0,0 1,0,0 3,10 1,20 0,10
0,0, 30,5 L5 L3LE 0.5
Symmetry operations
For (0,0,0)+ set
(1 (2} 3* 0,0,z 3y 3- 0,0,z
For (3.3,1)+s
M (3, :L) (2) 37(0,0,5) 5,3z (3) 37(0,0,3) 3,0,z
For (3,1,3)+
(1) ¢(5, 3:%) {2) 31(0,0,3) 0,5,z (3) 37(0,0,3} 5.3,z
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CONTINUED

Generators selected

Positions

Multiplicity,
Wyckoff letter,
Site symmetry

Coordinates

0,0,00+ (553)+ (,55+

9 b 1 (1) X2 (2) )’_,x_)’,z (3) f"‘}’af,z

3 a 3. 0,0,z

Symmetry of special projections
Along [001] p3
a' = i{(2a+b)

Origin at 0,0,z

Along [100] p 1
a' = 3{a+2b)
Origin at x,0,0

b =i(-a+b)

Maximal non-isomorphic subgroups

I BIR1(PL 1) I+

IMa [3]P3,(145) L 2+ (3,530 3+(3,4,9)
[31P3, (144) B 2+(G,45 34,59
[31P3(143) 1; 2, 3

IOb none

Maximal isomorphic subgroups of lowest index
Ic

Minimal non-isomorphic supergroups

No. 146

(1); £(1,0,0); £(0,1,0); 1(0,0,1); 1(5.4,3) (2)

b =i(—a—2b+c)

[21R3 (2" = —a,l = —b,¢ = 2c) (146); [4] R3 (2’ = —2a, b’ = —2b) (146)

R3

Reflection conditions

General:

hkil + —h+k+1=3n
hEiQ © —h+k=3n
hh2hl: 1=3n

BHOL © h+-1=3n
0004 - {=3n

RROO : h=3n

Special: no extra conditions

Along [210] p1
a=3b b=ic
Origin atx, ix,0

I [21 R3 (148); [21R32(155); [21 R3m {160); [2] R3c (161); [4] P23 (193); [4] F 23 (196); [4]1123 (197); [41 P2, 3 (198);

[4]72,3(199)
IO [3]P3(a=12a+b),b=1(—a+b),¢=ic)(143)
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R3 C; 3

No. 146 R3
RHOMBOHEDRAIL AXES
5
/ \ %+O
A O%-% %-‘-
| g
A— A o
iy
/ \' / 0 -4
A A O'§+ +
X / ¢
O
A £

\
O+

O

¥

-

Trigonal

+Q

Heights refer to hexagonal axes

Origin on 3

Asymmetric unit 0<x<t; 0<y<h 0<z<I; z<min(x,y)
Vertices  0,0,0 1,0,0 1,1,0 0,1,0 1,1,

Symmetry operations

1y 1 2) 3* x,x,x 3) 3 xx.x
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CONTINUED No. 146 R3

Generators selected  (1); #(1,0,0); #{0,1,0); £{0,0,1); (2)

Positions
Multiplicity, Coordinates Reflection conditions
Wyckoff letter,
Site symmetry General:
3 b 1 D x,nz (2) z,x,y 3) »z,x no conditions

Speciai: o extra conditions
1 a 3. XX, X

Symmetry of special projections

Along [11E] p3 Along [110] p1 Along [211] p1
=4{2a—b—¢) b = {(—a+2b—c) a=ilat+b—2¢) Db'=c¢ a=ib-¢ W=ifa+b+c)
Origin at x,x,x Origin at x,%,0 Origin at 2x,X,%

Maximal non-isomorphic subgroups
| 3IR1(PL D 1
Ila none

Ob [3]P3,(@=a~bb =b- cc—a+b+c)(l45) [3]P3,(@=a—b, M =b—c,c=a+b+c)(144);
[31P3(a@=a—b,b=b-c,c=atbiec)(143)

Maximal isomorphic subgroups of lowest index
Ilic [2]1R3(@ =btc,b = a+c ¢ = a+b)(146); [4]R3(a'=-a+b+ecb=a—b+tcc = a—l—_b_—c)(146)

Minimal non-isomorphic supergroups

I [21 R3 (148); [21 R32(155) [2]R3m(160) [2]R3c(161) {4]P23 (195); [4}F23(196) [4}123 (197); [4]1 P2, 3 (198);
[4]12,3{199) _

I [31P3(a' = {(2a—~b~—¢),b' = %(—a+2b—c},c = i{a+b+c))(143)

PAATHT
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HREIDANUNAL 1 aIES TO1 WA ySIanugrainy \&Jvo). YOI /A, IPave yroup 219, pp. 00o—oou.

F43m T} i3m Cubic

No. 216 F43m Patterson symmetry Fm3m

I

[ ] L)

E

:bl——
ol
et

o

forned

Origin at43m

Sz ySmin(e;
1

—x); —y<z<y

Asymmetric unit X
Vertices ,0.0 1.0,

WMDY
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CONTINUED
Symmetry operations
For (0,0,0)+ set
!
(5) 3t x,x,x
9 3 x,x,x
(13) m x,x2
a7 m x,yy
2 m xyx
For (0,4
(1)

)+ set

um ]
o=
~—

(5) 3*(1,1,3) atix—gx
(9) 37(%)%)}5) xﬁ%rx 3,4
(13) g(3,%,3) x+ixz
(17) g(%:%:%) Yy
21) g(3.0,5) xyx

) xtgxtx

(5,44
(9) 37(4,1,3) xHixtgx
(13) g{3.3.0) xxz
17 %117}‘ X, +'l'7
( )g(lz;) YLy
(21) g{3,5,3) x+iyx

Generators selected (1) #(1,0,0);

Positions
Multiplicity,
Wryckoff letter,
Site symmeiry
9 i 1 (1) x,y,z
(5) z,x,y
N »zx
(13) yx,z
{(7) x,2,y
@D zyx
48 R ..m X,X, 7
7,X%,x
24 g 2.mm X, 5.4
24 f 2.mm x,0,0
16 ¢ .3m XXX
4 d 43m 1,43
4 ¢ 43m L
4 b 43m 113
4 a 43m 0,0,0

(2) 2 0,02

(6) 3* %,x,%

{10y 3~ x,%,%
(14 m x,%z

(18) 4* x,0,0; 0,0,0
(22) 3- 0,,0; 0,0,0

(2) 2(0,0,3) 1,02
(6) 3+(§F% 3
a0 3 x+i,%,%

(14) g(5,— 4:2) x+i,%,2
(18) 4+ xJZJE!

(22) 4 §,y0;

(2 2 {42

(6) 3* i+ix.%
(10) 3~ x,3+1
14y m x+i,%z
(18) 4% x,3,— 55

(22) ;1_ %: P

Coordinates

(0,0,00+ (05,33 (3,0,5)+

(2) 1,9,z
6) z.%,7
(10) #,z,%
{14} 3,%,z
(18) X,2,7
(22) £,7,%

2
Ral

=
M

K3l Ryl
o) T
=

k)
Ry
-

) Frgatak

Bl e

f(O)]JO); ) r(071)2)

No. 216

32 030
(7) 3* x.0,%
(1) 3~ Eix
(15) & 0,0, 0,0,0
(19) 4~ x,0,0; 0,0,0
(23) m xyx

(3) 2(0,3,0) O3

(7) 3+( 3:3)3) x+§,f-é,£
11y 3~ x+2,x+2,x

(15) 4+ -na:zs 451):

(19) 4 x,0,4; 0,0,

(23) g(_%:%:%) X+ipx

(32 iy:

(7) 3% x43,58-4,%
(1) 3 §+1,5x
(15) 4* §,—3.2 4,4
(19) ZI'_ xa“és%; iy_%
(23) m Blyx

(3) 2(0,5,0) 320

(7) 3* x+35,5,%

(II) § (is'j;_") x+3)x+6l
(15) 4% 1,0,z 1,00

(19) 4 xﬁim" ;-’%l%

(23) g(mz: 4} THiyx

1(3,0,3); (2); (3); (5): (13

(4) x,3,Z
& 7
(12) 7,%,x
(16) ,x,Z
(20) x,%, 7
(20 z,9,x
Z,X,X 7%, %
Xy zrx .X:, f:x
b hiX
0,0,x 0,0,%

659

@ 2 x00
(8) 3* §,5,x
(12) 3~ %,x,%
(16) 4~ 0,0,z; 0,0,0
(20) m xyy
(24) 4+ 03,0, 0,0,0

4) 2 xi;

(8) 3 X 3+ix
(12) 3~ Z—1,x+4,%
(16) £_|._ _41’3172:; _-1174E
(20) m x,y+3.3
(24) 4+ —%’yul; _%Mls

af—

&

@) 2(3,0,0) x0,4

(8) 3* F+4,%+3, x

(12} 3~ (3, 53) Xt ¥
(16) 4_ 4?4’Z’ .:).:,}.i

(20) g(_ .1;4) xytiy
24) 4* O,p%; 0,04

4 2(3,0,0) x50
(8) 3+(%)%3“%) _x=+é’f+_31_’x
(12) 3~ Fxti &

Reflection conditions

h,k,I permutable

General:

hkl . R+ER+H1LE+HI=2n
Okl : k,1=12n

hil : h+1=2n
hOO: h=2n

Special: no extra conditions

XD




F43m

No. 216

Symmetry of special projections

Along [001] pdmm
= b=:b
Origin at 0,0,z

Along [I11] p31m
a=32a—b—c)
Origin at x,x,x

b'=!(-a+2b—c)

Maximal non-isomorphic subgroups

I [21F231(F23, 196)

B1F&1mdm2, 119)

{[3] Film(Iim2, 119)

BIFi1mIdm2, 119)

[41F [3m(R3m, 160)

[41F [3m(R3m, 160)

[4}F 13m (R3m, 160)

[4]1 F 13m (R3m, 160)
( [4] PA3m (215)
[4] PA3m (215)

¢ {41P43m (215)
{41P43m (215)
( 41 P43m (215)
[41P43m (215)
[4] P43m (215)

[4] P43m (215)

.

ITb

none

(15 25 3; 45 5, 6: 75 8, 9; 105 11; 123+
(13 2; 3; 4, 13; 14; 15; 16)+
(1; 2, 3, 4, 17; 18; 19; 20)+
(1; 2; 3; 4; 21; 22; 23; 24)+

P % 13,17 21)4+

CONTINUED

Along [F10iclml
a'=i(-a+bh) b=c
Crigin at x,x,0

F(0,4,1) (5: & 7, 8 213 22; 23;

(5,0,3); (5: 6, 7; 8, 13; 14, 15;

(1; 5,

(I; 6; 12; 14; 20; 21)+

(4 75 10; 14; 17, 23)+

(I; 8 11; 13; 20, 23)+

By 2,3, 45 5,6; 7, 8, 9; 10, 11; 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22: 23: 24
1; 2; 3; 4; 13, 14; 15; 16; (9; 10y 11; 125 17; 18; 19; 20) +

24)+(3,0,3)

1; 2, 3: 4; 17; 18; 19; 20; (9; 10; 11; 12; 21; 22; 23; 24) +

16) + (3,3.0

1; 2; 3; 4, 21 22; 23; 24; (5, 6, 7, 8, 17, 18; 19; 20} (0, %, 4); (9; 10; 115 125 13; 145 15;
16) + (3,4,0)

1; 5; 9, 13; 17; 21; (45 6; 11; 15; 20; 22) +
14; 19; 24)-?-(;,;,0)

1, 6; 12; 14; 20; 21; (45 5, 10; 16; 17; 22) 4+ (0,4
13; 18; 24) + (1,5,0)

L 7; 10y 14; 17; 23; (4 8; 12; 16; 20; 24) + (0,
13, 19; 22) +(4,4,0)

1; 8; 11; 13; 20; 23; (4 7; 9; 15; 17; 24) + (0,

14; 18; 22) +(3,1.0)

Maximal isomorphic subgroups of lowest index

Iic

[27] F43m(a’ = 3a,l = 3b,¢ =3¢} (216)

Minimal non-isomorphic supergroups
I (2] Fm3m (225); [21 Fd3m (227)

1T 2] PA3m(a = la, b =

ih,¢' = ;¢)(215)

660

(0,1,1); (3; 8; 10; 16; 18; 23)+ (4,0

1 (3,5 125 165 19; 21

(257 12,

A (075 105 15519 23) + (4,0, (2 8 9
2k (30609515, 18 21) + (3,0,3 (2 55 1L

)+(%0~%}! (29 6; 10;

N )
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- 4 _
Fd3m O, m3m Cubic
No. 227 F 4, / d 3 2 / m Patterson symmetry Fm3m

ORIGIN CHOICE 1

Tn.*
e

'}.%
o

s
P

o

(A
i
RENE £

=
i

Origin at43m, at —}, —{, — 4 from centre (3m)

Asymmetricunit 0<x<l; 0<y<} —~f<z<y y<min(i-xx); —y<z<y
Vertices 0,0,0 40,0 %343 3t 3

Symmetry operations
{given on page 699) B
HMH
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CONTINUED

No. 227

Generators selected  (1); #(1,0,0); £{0,1,0); #{0,0,1); ¢(0,%,3) (5,0,3); (2); (3); (5); (13); (23)
Positions
Multiplicity, Coordinates Reflection conditions
Wyckoff letter,
Sitesymmeuy (03020)_'_ (0!%:%)"' (%,0,%)*{" (%:%90)+ h,k,[permmable
General:
192 i 1 (Dxyz (2) £, 7+ 5,2+ 3 (3 x+i,y+4.2 (@ x+19,7+13 hii © h+k=2nand
(3) zyx,y (6) z4+3,5,9+3 (Mzx+iy+3 @ z+3,x+3,7 htlk+1=2n
(9 nz,x (0 F+iz+4E (D y+nii+d (1) Fi+ia+d Okl : k+1=4nand
UDy+ix+5i+1 (D F+LE+LI+] UDy+hE+12+] (16 F+1x+32+) kil =2n
(D xtiztiied A9 F+dz+iyrl (D F+LIHLT+E QO+ z+dy+i AL A=
QD z+iy+thE+] @Dzt pitixti @DIriyrixt) @HriLy it A
@5) E+ 5, 5+5,2+5 @O x+4y+5,2+5 @Nx+iy+i,z+; @) x+iytizti
@29 z+5 I+ 7+5 GO zZ+Hix+iy+i GDztix+ii+: (D z+Hix+5y+;
B y+ii+tr+i GHhy+iz+Hix+i GO y+iztna+y (6 y+iz+ii+g
(3D y+5x5z+3 (38) yx,z (39) Fx+ 3,2+ @0 y+3,35+1,2
@l 455,y +13 42y x+5,7+3.7 (43) x,z,¥ 44 5,2+ 4,7 +14
(45y z4- 1, 7,x+13 46) 7,y + 1,5+ (47) z+1,7+1,% (48) z,y,x
Special: as above, plus
9% h .2 nhyt: RIELFHD LyhiLy+d RPY+: no extra conditions
Frhiy FLoitr o yEniyt: o yEnig
WITnE  Frnitani yray+tng Bytiag
DARDENEBES AL D AN BT IR
»oyt+io ytanayti FELEFHD Byt
FHomi  yriythni FELIELT v LU
9% g Lm X,X,Z E+iz414 X+3.x+1,2 x+3,5+1 no extra conditions
z7x1x Z+%1f?'f+% Zﬁx—+%3x+% z.—}-%,x....,k%,f
xﬁz’x 'f+é)z+%7f 'x+;"727x_+{5 f1é+%:x+%
xtdxtnitd ERLEbLIvd xbaEtbiabd o Eedahiztd
x+ 4zt i+5 Fdaztiaty T4 It i+Hd xbnitaati
ghixHLERT 2t LR Labd IHfxbLabd TR LER LI
48 f 2.mm  x0,0 X, 5.4 G,x,0 1%, 4 0,0,x LhE hikl . h=12n+1
Lxthi o LXtni x+457 0 FHLi: Londhi o nixtd or htk+i=4n
32 e 3m X,X,% Ei+ix+d no extra conditions
4 i,0+ 5,8 X+ 3,55+
x+ihx+nf+i I+t 5i+
xtiEiae+?d o Fbixddatd
16 d 3m g:%a% %azswé %:éa% %s%a% } Bkl h=12n+1
B or hkI=4n+2
16 c 3Im %H%Hl& 313!% %:%:% %:%1% or h,k,[:4}1
8 b 43m 5,5, Taded } hid - h=2n+1
- or h-t+k-+4i=4n
8 a 43m 0,0,0 3,13
Symmetry of special projections
Along [001] pdmm Along {111} p6mm Along [110] c2mm
a=1(a—h) b =i(at+h) a=i{2a-b-¢) b = i{—a-+2b-¢) a=1i(—ath) b =c
Origin at 0,0,z Origin at x,x,x Origin at x,x, }
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Fd3m No. 227 CONTINUED

ORIGIN CHOICE 1

Maximal non-isomorphic subgroups

I [21 F43m (216) (12,34, 5,6, 7; 8 9; 10; 11; 12; 37; 38; 39; 40; 41; 42; 43; 44; 45; 46; 47; 48)+
[R}F4,32(210) (1;2;3: 4, 5; 6. 7: 8, 9; 10; 11; 12; 13; 145 15; 16; 17; 18; 19; 20; 21; 22; 23; 24)+
[21 Fd31(Fd43,203) (1: 2, 3: 4; 5, 6, 7, 8, 9; 10; 11; 12; 25; 26; 27, 28; 29, 30; 31; 32; 33; 34; 35; 36)+
[31F4,/d12/m(l4 famd, 141} (1, 2; 3; 4; 13; 14; 15; 16; 25; 26; 27; 28; 37; 38; 39; 40)+

{{3]F41/d12/m(14]/amd, 141y (1; 25 3; 45 17; 18; 19; 20; 25; 26; 27; 28; 41; 42; 43; 44)-+

(B1F4,/d12/m({4 /amd, 141) (1 2; 3; 4; 21; 22; 23; 24; 25; 26; 27; 28; 45; 46; 47; 48)+
[4]F132/m(R3m, 166) (13 5; 9; 145 19; 24; 25; 29; 33; 38; 43; 48)+
[4] F132/m(R3m, 166) (1; 6; 12; 13; 18; 24; 25; 30; 36; 37; 42; 48)+
[41F132/m(R3m, 166) (1; 7; 10; 13; 19; 22; 25, 31; 34; 37; 43; 46)+
[41F132/m(R3m, 166) (1; 8 11, 14; 18; 22; 25; 32; 35; 38; 42; 46)+

Ha none

Hb  none

Maximal isomorphic subgroups of lowest index
Te [27]1Fd3m(a =3a,W =3b,¢ = 3¢)(227)

Minimal non-isomorphic supergroups
I none
If [2]Pn3m{a’ = la,b = ib,¢ = lc)(224)

SOAH S
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CONTINUED
{from page 696)

Symmetry operations
For (0,0,0)4+ set

(1

(5) 3" x,x,x

(% 3 x XX
(13) 2(

1

For (0,1, %)—i— set
(1) £(0,3,3)
(5) 3"”(%:%:%) x_%sx_%:x
(9) 3M(%:%:%) x—g‘,x—}-%,x
(13) 2{(3,1.0) xx;
(17) 4—(%:010) xa%f"%
(21) 4+(014é:0) %:y:——%
(25) 1 444
(29) 3" xxt5x 53
(33) 3_ x_%ix_%:X; Ssl':lia%
(BT m x+ixz
(A1) 47 x,4,55 444
45) 4" Sy b
For (1,0,3)}+ set
(1) £(5,0,3)
(5) 3+(%3%1%) x+éax_és-x
(9) 3_(%9%1%) x_éax_%r-x
(13) 2(5,5.0} x5
(17) 47(5,0,0) x,5,0
(21) 44—(0:%10) %vyzo
251 i

!

(37) m x%z
(41) 4- x,0,0; 0,0,0
(45) 4+ 0,0, 0,00

For (3,3,0)- set

(1) #(3,1,0)

(5) 37(3.3,5) xtgatix
(9) 37(3,3,5) i xtgx
(13) 2(5,3,0) x.x+3.3
(17) 47(;,0.0) %30

2D 40,:,0) 3.3;
25) 1 1

(29) 3* x+5,5% §i0d
(33} 3 X xtb5X fhin
(37) g(_il 57%) x+§,f,z
(41) 4~ x,0,4 00,4

(45) 1+ %:%51 7%7%1%

No. 227

(2) 2{0,0,3) 0,3z (3) 2(0,5,0) 5.0

(6) 3+(%,“%7%) f+é:x+%=x— (7) 3_(_%:%3§) X+% 'x__?isaj
(10) 3~ x,%+3,% (11) 3~ F+4,%5x

(14) 2 x.3+33 (15) 47(0,0,3) .32

(18) 2(0,4,5) §y+iwy (19) 2 5y+3.9

(22) 2{%:[”%) x—%,%,x (23) 47(0)3}0) %: ;%

(26) d(,3.0) x.ps (27) d(1,0.2) x5z

(30) 3" i—Lx+ L% —§454 (1) 3 £ I+LE b4
(34) 3, x+§,fwl,f; %?7%3% (35) 3 x+%:x+§,x; ué!%’%
(38) m XIZ (39) Zl'_ _}Aaza _41155%
(42) g( - ) xsy+%:? (43) m xy>y

i
4_ .
(46) g(— % %,%) Ft1,px @7 4 Ly—5 hi

(2) 2 0.0, 32 1w

(6) 3* T+i,x,% (7 3" x,5,X

(10) 37 x+3,%.% (1) 37(5,5,— 1) Xhj,aigx
(14) 2(_1%541'0) x3x+;3§‘ (25) 47(090}%) %:O:Z

(18) 2{0:%5%) %a)“%:y (Eg) 2 %:)’Jrfny

(22) 2(3,0.1) x4, (23) 47(0,3,0) Oy

(26) d(5,5.0) xy: (27) 4(3,0,3) x5z

(30) 3+ f_l)x'f_%’f; _%9%:% (31) 3+ x3x+§ £ :l; %)_é
(34) 37 -1+1)f7§7-f; %f‘%:% (35) ¥ XX+1 X _alu%:%

(39) 4- 0,0,z 0,0,0

Y.y (43) g(0,3,5) xyy
(46) m Lyx 47 4- 100, 4,0,0
()2 iiz (3) 2(0,3,0) O,y
(6) 3" £,x,% (7) 3" x+i,%,%
(10) 37 (—1,5,3) x+3,84+5,% (11) 3~ 7.5«
(1) 2(3,~3,0) xits; (15) 4-00,1) 1.0z
(ES) 2(07353) %:,\’:y (19) 2(01—2’:%) §‘$)’+;ﬂa_’
(22) 2(%707%) x+4£7%>x (23) 4-( :3330) _é:y:lz
(26) d($,1,0) xy3 (27) d(:.0,3) x5z
(30) §+ .\':—%,x+é,f; "'"':hé:% (31) 3+ X*%,f%%,f, %:é),%
(34) 3 x+1,5-1,% §,—4.2 (35) 37 £ 5ti,x —4i.3
(38) gl(3,5.1) x+a.xz (39) 4~ 0,3,z 0,3,0
(42) m X;Y+§s)7 (43) g(%::]i:%) -x,}""‘_},,y
(46) g(3,5,—1) FHiyx (A7) 4 Lya b
(2) 2(0,0,3) 1,02 (3)2 00
(6) 3" x,xt+3,% (7 3* x+i i1k
(10) 37 x,xx (11} 37 x+4,5+4x
(14) 2 x 5+313 (15) 47(0,0,3) 3,—1.z
(18) 2(0&&) %1}%)’ (19) 2(0341 3) %,)’4—%,_}_’
(22) 2(3.0.3) x3.x (23} 4°(0,5,0) O}
(26) d(%ulvo) x,y,% (27) d(u 14) J%:Z
(30) 37 53,0+, 4.5 (31) 3* x+3,5+ 1% 5,473
(34) g_ X+%,f"§, x; %J_éié (35) 3 x_?)x'l_l X5 _§!§3%
(38) g(3,1,0} xxz (39) 4 14,3 b
(42) m x,p9 (43) g(4.5.5) xy+iy

(46) m T+i.px 47y 4- 0,y,0; 0,0,0
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4 2(4,0,0)
(8) 3% i+i,%
(12) 3 £x,%

W),MH

{40y 4+ 1,—1 in
44y 4* xOO O 0,0
(48) g(% % %) l_%z)’:x

4y 2 x00
(8) 3* Li+i,x
(I2) 37 Fx+3i.%
(16) 4+(O:Oa§) ——}!
@0) 42.0,0) xt,
(24) 2 F+ibx
(28) d(0,5.3) &y
(32) 3+ 43,8+,
(36) 3~ F4ix-1i,
40y 4° 4,1z i,
i

71Z

BT

53] an

201~ i~

P [
|

P

~ b B

434 rd
(44) a‘: x;dla'—%; 4:%:'—.!7.
(48) g(3,0,3} xyx
(4) 2 x.i:
(8) 3" X ix
(12) 3_(§e_%1!3) f_% x_f_%:f
(16) 47(0,0,z) 0.3z
(20) 44‘(;700J xs_li':%
(24) 2(%101“41) "E"E'"%}%:x
(28) d(0,3.2) &2
(32) §+ f_,_% fa"’; 5(21_;73é
(36) 3 i+ 1 WX %:%f""%
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CONTINUED No. 227 Fd3m

Generators selected  (1); 1(1,0,0); #(0,1,0); £{0,0,1); £(0, 5,4 ¢(5,0,3); (2): (3); (5); (13); (23)

Positions
Multipficity, Coordinates Reflection conditions
Wryckoff letter, o | | O
Site symmelry {030:0)+ (01 ER) 5}+ (5107 §)+ (5: '2':0)+ h,k,[ permutable
General:
192 ¢ 1 (Daxyz (2)x+3,5+iz4+1 Gyx+by+ii+: @ x+iy+2z+3 Al h+k=2nand
¥ ¥ 3
(5) z,x.y O z+5x+59+: DI+iI+iy+s @) Z+5x+ 55+ htlk4-1="2n
©) yz.x A0 iz tydri (A y+izrit) D ytizria+rl Ok k+i=dnand
(AN y+ixt bzt (143,52 U9y Hhetiat] (0F+battets  kl=2n
(A7 x+1z4 55+ (I8) F+z+3,y+) (9523 (Q0) x+1,2+4,y 4] Ah AL
QU z+iy+ i3+ QD e+ i+t @3) I+ y+ixts 24558 s A
(23} 5,5,2 (26) x+,y+3,i+; @Dx+gy+izt; @8 xtiy+iatg
(29} ,%,¥ GO z+ix+hy+i GDzdix+37+:s (D e+i8+35,y+4
(33yr.2.x GhHy+iE+ixt+i B9 y+aztaa+: GO y+iz+ii+i
BDy+oxtnzt: B8 yxz B F+iatnitr @Oy A+ tg
A F+5I+5y+1 @D x+52+55+3 (@3) xzy (44) T+ 3,2+ 4,5+
@5y z+ 5, 7+3a+5 @O Z+iy+58+: (N z+55+5,0+5 (8) zyx
Special: as above, plus
9% A ..2 O,y Hy+ed+: Ly+Ly+ti ¥ Lyt no extra conditions
70y FH+LLI+T yHLLYFT yHL I
»5h0  y+,¥+s: yHiy+taa FELnytiag
0,7,y  Hy+iy+i  L¥ELYET 0 Ly+ig+:
»0, 3y ythpyt: oyt yhannyhg
730 y+iy+i: Friytai yrL¥bL:
% g ..m X,X,2 I+ E4+4z+) FHix+4E4d 0 x4, 842,744 noextra conditions
2,5, X z+5,E+ 3,8+ 43 Atiaxtd IR ixriiod
X,2,% F+izti,fH7 x4 nZEnEH XHLIF X+
x+47'x+4:2+§ f,f,f X'I'%j.f'f'%;f,“}'% f'}'%,x"}“%;Z“*“%
i+t hi+d IHiztixt: %X x+hz+ix+;
z+ix+ix+d zdlxEdbix+?r Z4lxiix+l AR
48 f 2.mm x5 Ftims  ohs EFLE D TEIC R Rkl @ h=12n+1
hrthi o nAi a+ihig FELET LidHE o LEads or htktl=4n
32 e .3m XXX I+3,i+5x+t no extra conditions
FrLxrnEh] b LI
r+ix+lE+Y EBEX
X+ 53+ 50+ Frpnatixtg
6 d .3m i H60 §505 053 Rkl @ h=1n+1
, or hkl=4n+2
16 c 3m 010,0 %a} % %:%:% %MA:% or h,k,l:4ﬂ
8 b 43m 3:3:3 i3, Rkl h=2n+1
B or h+k+1=4n
8 a 43m SE I
Symmetry of special projections
Along [001} pdmm Along [111} p6mm Along {110} ¢2mm
a=1a—b) b =1i(a+b) a=1(2a-b—¢) b=i(-a+2b-¢) a=i(—a+b} b=c¢
Origin at §,$,z Origin at x,x,x Origin at x,x,0

KM G
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Fd3m No. 227 CONTINUED

ORIGIN CHOICE 2

Maximal pon-isomorphic subgroups

1 [2} FA3m(216) (1; 2,3, 4, 5,6, 7, 8 9; 10; LI; 12; 37; 38; 39; 40; 41; 42; 43; 44; 45; 46; 47; 48)+
(2] F4,32(210) (1; 2,3, 4 5,6, 7, 8 9; 10; 11, 12; 13; 14; 15; 16; 17; 18; 19; 20; 21; 22; 23; 24)+
121 Fd31(Fd3,203) {1;2,3; 4, 5,6, 75 8 9; 10y 11, 12; 25; 26; 27; 28; 29; 30; 31; 32; 33; 34; 35; 36)+
{31F4,/d12/m{4 jamd, 141) (1; 2; 3; 4; 13; 145 15, 16; 25; 26; 27, 28; 37; 38; 39; 40)+

{{3]F4”h112ﬁn(1£/anut141) (1; 2; 3; 4, 17; 18; 19; 20; 25; 26; 27; 28, 41; 42; 43; 44)+

[31F4,/d12/m(I4 Jamd, 141} (15 2; 3; 4; 21; 22; 23; 24; 25; 26; 27; 28, 45; 46; 47, 48)+
[41 F132/m(R3m, 166) (1; 5; 9; 145 19; 24; 25; 29; 33; 38; 43; 48)+
[ F132/m(R3m, 166) (1; 6; 12; 13; 18; 24; 25; 30, 36; 37; 42; 48)+
[4] F 132/m(R3m, 166) (1, 7; 10y 13; 19; 22; 25; 31; 34; 37; 43; 46)+
[41 F132/m(&3m, 166) (1; 8; 11; 14; 18; 22; 25; 32; 35; 38; 42; 46)+

fla none

IIb none

Maximal isomorphic subgroups of lowest index
Ilc [271Fd3m(a' =3a,b =3b,¢ = 3¢){(227)

Minimal non-isomorphic supergroups
I none
I 21 Prdm(a =lab = lb,¢ = ic)(224)
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CONTINUED
{from page 700)

Symmetry operations
For (0,0,0}+ set

(I 1

(5) 3* x,x,x

9 3 x,x,x

(13) 2(3,5,0) xx—3,5
{17y 4~ (% 0) X3
(21) 4*(0,},0) g g
25y 1 00,0

(29) 3* x,x,x; 0,0,0
(33) 37 xx,x 0,00

37 g(—l 1,-’) x+i %z

41) 4 I

PSR AL
ys’ FREREY

(29) §+ xfézxfé:;ﬁ 01012l

(33) 3~ x+1xx; 10,0
(37 m ,\+4 Xz

For (1,3,0)4 set

(1) 2(3,3,0)

(5) 3+(%,§=%) x‘i‘%ax_}_
9) 37(5,5,3) x+ixt+
(13) 2(3,2,0) xx+31,3
(17) 4_(%10!0) x:%s_ﬁl'
(21) 47(0,3.0) 3%
(25) T 1,30

(29) 3+ x+1x,x 100
(33) 3 x,x+4,x, 0,40
(37) g(%)m%>%) x+%=j1z
(41) 4- x;‘%,%; é,mé,%
(45) & 08 Dok

6) 3 f+%,x+4,
(11} 3 (m, %) Fhgs,
(15) 47(0,0,3)
(19y 2 Oy
(23) 47(0,3,0) vz
27y d(3,0,1) x,3.2

(38) m xx,z

| ,-.\

S i R i
=
=

|

PRI

\.—l_..

I

s _|_

i g

b

(6) 3+ Fx+L %
(10) 3= x+1,%,%
(14) 2 x,¥+L0

Ol
=
b .

30y 3* x-—;,x-l-d,x, -3
(34) 3- x+i,5-4
(38) g(5,3,0} x,x,z
(42} m xy+i.¥
(46) m T+iyx

Zim flw

No. 227

3L
ERERL

T XA x
i3 g ,x
(15) 4°(0.0,3)
(19) 2 Oy+3.3
(23) 4°(0,1,0)
(27) d(3,0,3) %0
(31) 3 x7%:j+%:j; 0:%
(35) 3_ f_"s-f_i_%:x'a _i':

i 1
e

]
=55k

313

& TEE

X0y
-3

33 _
» T8

(3) 2(0,3,0) 335
(7) 3% x+3i, %%
(1) 3 x+i,i43,x
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8.3. SPECIAL TOPICS ON SPACE GROUPS

Table 8.3.5.1. Sequence of generators for the crystal classes

The space-group generators differ from those listed here by their glide or screw
components. The generator | is omitted, except for crystal class 1. The
subscript of a symbol denotes the characteristic direction of that operation,
where necessary., The subscripts ¢, y, 110, 110, 101 and 111 refer to the
directions [001], [030], [110], {1103, [101] and {111}, respectively. For mirror
reflections m, the ‘direction of m’ refers to the normal to the mirror plane. The
subscripts may be likewise interpreted as Miller indices of that plane.

Hermann-Mauguin symbo! of Generators G; (sequence left to
crystal class right)

1 1

i 1

2 2

m m

2/m 2,1

222 2.2

m2 2, my

mrnm 22y, 1

4 2.4

a 2.4

4/m 24,1

422 2,,4,2,
dnum 2,4, m1,
d2m 2,.4,2,

Am2 2,4,y
4/mmm 2,42, 1

3 3

3 3,1

321 3210
{rhombohedral coordinates 3 207)
312 3,240

3ml 3,mp
(rhombohedral coordinates 3, mpr)
31m 3.mg

3wl 3,250, 1
{rhombohedral coordinates 3111, 2087, 1)
3m 3240 ¢

6 3,2,

G 3,m,

6/m 3.2,.1

622 32,209
G 3,2, M1
om2 3, By, H
82 3,m, 20
6/ minm 3.2 210, 1
23 225,311
m3 202,310, 1
432 2:,2,301. 210
43m 20 2y 311171013
m3im 2z,2y,3||],21m,i

group m3m can be described by two generators. Different choices of
generators are possible. For the present Tables, generators and
generating procedures have been chosen such as to make the entries
in the blocks General position (¢f. Section 2.2.11) and Symmetry
operations {cf. Section 2.2.9) as transparent as possible. Space
groups of the same crystal class are generated in the same way (for

sequence chosen, see Table 8.3.5.1), and the aim has been fo
accentuate important subgroups of space groups as much as
possible. Accordingly, a process of generation in the form of a
‘composition series” has been adopted, see Ledermann (1976). The
generator Gy is defined as the identity operation, represented by (1}
X, ¥, z. Gy, Gy and Gy are the translations with translation vectors a,
b and ¢, respectively. Thus, the coefficients &y, k3 and k4 may have
any integral value. If centring translations exist, they are generated
by translations Gs {and Gg in the case of an F lattice) with
translation vectors d (and e). For a C lattice, for example, d is given
by d =1(a+b). The exponents ks (and ks) are restricted to the
following values:

Lattice letter A, B, C, F ks =0or 1.

Lattice letter R (hexagonal axes): ks =0, 1 or 2.

Lattice letter Fr: ks =0 or |; kg =0or 1.
As a consequence, any translation T of § with translation vector

t= kzﬂ + k3b + k4C(+k5d + kﬁ&)
can be obtained as a product
T = (Ge)™ = (Gs)® G + GI + G2 + Gy,

where kg, ..., ks are integers determined by T. Gg and Gs are
enclosed between parentheses because they are effective only in
centred latiices.

The remaining generators generate those symumetry operations
that are not translations, They are chosen in such a way that only
terms G; or G? occur. For further specific rules, see below.

The process of generating the entries of the space-group tables
may be demonstrated by the example of Table 8.3.5.2, where G
denotes the group generated by Gy, Ga, ..., Gy. For j > 3, the next

k:
generator Gjy; has always been taken as soon as G € G; i, because

in this case no new symmetry operation would be generated by Gf’
The generating process is terminated when there is no further
generator, In the present example, Gy completes the generation:
G; = P6,22.

8.3.5.1. Selected order for non-translational generators

For the non-translational generators, the following sequence has
been adopted:

(@) In all centrosymmetric space groups, an inversion (if possible
at the origin O) has been selected as the last generator.

(b) Rotations precede symmetry operations of the second kind. In
crystal classes 42m—4m2 and 62m—6m2, as an exception, 4 and 6
are generated first in order to take into account the conventional
choice of origin in the fixed points of 4 and 6.

(¢) The non-translational generators of space groups with C, A, B,
F, T'or R symbols are those of the corresponding space group with a
P symbol, if possible. For instance, the generators of [2,2,2; are
those of P21212; and the generators of Tbca are those of Pbca, apart
from the centring translations.

Exceptions: Hcem and 14/mem are generated via Pdcc and
Pdfmcc, because Pdem and P4/mem do not exist. In space groups
with o glides (except [42d) and also in /4,/a, the corresponding
rotation subgroup has been generated first. The generators of this
subgroup are the same as those of the corresponding space group
with a lattice symbol F.

Example B
Fdyfd32/m : P4,32 — F4)32 — F4,/d32/m.

(d} In some cases, rule (¢) could not be followed without breaking
rile (a), e.g. in Cmme. In such cases, the generators are chosen to
correspond fo the Hermann-Mauguin symbol as far as possible. For
instance, the generators (apart from centring) of Cmme and fmma are
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ing duplicate Wyckoff designations within a structure, pro-
vided atomic coordinates do not overlap. For instance, the
Wyckoff site with letter ¢ in space group 62 has flexibil-
ity in the x and z coordinates, so that both the calcium
and oxygen atoms in the CaTiOs (Pnma) perovskite struc-
ture (AB3C_oP20_62_c_cd_a) have the same letter desig-
nation. In general, structures with identical sets of Wyckoff
positions can be distinct with different choices of Wyckoff
variables, resulting in entries in the library that have dupli-
cate AFLOW labels despite being unique prototypes. With
the countless potential structures left to explore, the library
is constantly growing and collecting more structural proto-
types.

This article presents the continued work and second in-
stallment of the AFLOW Library of Crystallographic Pro-
totypes. In Part 2, the crystallographic library is extended
by 302 structure prototypes, including i. structures from
the remaining 138 space groups not represented in Part 1,
ii. structures with a Strukturbericht designation not listed
in Part 1, and iii. structures of interest to the community
and/or the authors (e.g., metallic phases of hydrogen sul-
fide [33] and the quaternary Heusler [34, 35]). The online
version of the library contains all of the prototypes from
Part 1 and Part 2.

The outline of this article is as follows: Section 2 high-
lights the enantiomorphic space groups. Section 3 discusses
the Wigner-Seitz cell and showcases the Jmol functionality.
Section 4 introduces the two-dimensional plane groups (or
“wallpaper” groups). Section 5 describes the different space
group symbols, including the Hermann-Mauguin, Hall, In-
ternational, and Schonflies notations, along with the orig-
infsetting choices used throughout the library. Section 6
summarizes the descriptions of each entry in the library and
introduces new web features, including the Jmol applet and
online prototype generator.

2. Enantiomorphic Space Groups

In affine space — i.e., no defined origin — there are only
219 space groups (referred to as the affine space groups).
The eleven remaining space groups are mirror images (left-
handed versus right-handed structures) of one of the other
219 space groups and are equivalent in the affine space.
These pairs of space groups are the enantiomorphic pairs,
in which two prototypes can be formed as mirror images of
a single structure. The eleven pairs of enantiomorphic space
groups [36, 37] are:

e P4y (#76) and P43 (#78),

P4,22 (#91) and P4322 (#95),
P4,2,2 (#92) and P432,2 (#96),

P3; (#144) and P3, (#145),

®

P3(12 (#151) and P3,12 (#153),

e P3,21 (#152) and P3221 (#154),

Po6; (#169) and P65 (#170),

P6, (#171) and P64 (#172),

P6,22 (#178) and P6522 (#179),

P6,22 (#180) and P6422 (#181), and
o P4;32 (#213) and P4332 (#212).

The relationship between the enantiomorphic pairs is ex-
ploited in Part 2 to generate prototypes for otherwise unrep-
resented space groups.

If we look at space group P4; (#76), we see that it has
one Wyckoff position (4a), with operations [38]

( ) |—%— +l - +l —X +E
XY 2 X =¥ 2 5 Vs Xy Z % » X 2 3’

If we then look at space group P43 (#78), we find it also has
one (4a) Wyckoff position, with operations

1 3 1
(x,y2) (—x,—y,z+§) (—y,x,z+ Z) (,“x,z+z),

where the only difference is that the 1/4 and 3/4 fractions
have swapped positions. We can easily show that space
group #78 is a mirror reflection of #76 in the z = 0 plane.

To see this more clearly, consider the Cs3P; structure
(A3B7_tP40_76_3a_7a‘). This structure was found in
space group #76, but if we reflect all of the coordinates
through the z = 0 plane, it transforms into a structure in
space group #78, as shown in the Jmol [39] rendering in
Figure 1.

The distance between any pair of atoms is the same in
the P45 structure as it is in the P4 structure, and the angle
between any three atoms is the same in both structures. It

SG #76

Figure 1: Ilustration of enantiomorphic structures. Cs3;P; in space
group P4, (#76) (left), and reflected through the z = 0 plane into space
group P43 (#78) (right). The positive z direction is to the right in both
figures, with the mirror plane perpendicular to the page. The figures were
produced by Jmol [39].

!'"This structure can be found in the Library of Crystallographic Pro-
totypes at http://aflow.org/CrystalDatabase/A3B7_tP40_76_3a_7a.html.
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follows that the structures are degenerate, there is no differ-
ence in energy between them, and they should be equally
likely to form.

Any structure in space group P4, can be transformed into
P43 by this method. Pairs of space groups which allow these
transformations are said to be enantiomorphic [36, 37], or
chiral.”

In addition, forty-three other space groups allow chiral
crystal structures. The complete set of sixty-five space
groups are known as the Sohncke groups [36].

3. The Wigner-Seitz Primitive Cell

Given a lattice described by a set of primitive lattice vec-
tors, a;, a2, and a3, we can define a unit cell as a volume
which, when translated through every vector of the form
N a; + N; a; + N3 a3, completely fills space without over-
lap. Even if we require that this cell have the minimum
volume,

V =a;-(az x a3), 1)

this is not a unique definition, and in fact there are an infinite
number of choices for the primitive vectors.

As an example, consider the two-dimensional hexagonal
lattice with primitive vectors

= V3o,
1 = zax zay
1 3
& = Eai+gaj‘l. @)

We show this lattice in Figure 2, along with a two-site basis
(the gray squares). Perhaps the simplest unit cell we can
construct here is a parallelogram, as seen in Figure 2. This
is a unit cell, as it has the area of the primitive cell,

V3,

A=—a", 3

2 €))
each of its replicas contains two basis points, and the cell
with its replicas tile the space.

The choice of unit cell is not unique. Consider, for exam-

ple, an equivalent set of primitive vectors,

a, = 3 ak+ ﬁa \
L T 2 2
1 3
2, = Eai+7\/_a§, )
and the accompanying unit cell shown in Figure 3. This

choice of unit cell has the proper area given by Equation (3),
contains both basis points, and tiles the space. Both Fig-
ures 2 and 3 describe the same lattice plus basis, and so are
both unit cells for the lattice.

2Formally, any object has chirality if it is not superposable on its
mirror image [36]. Chirality is a fundamental aspect of life on Earth. All
amino acids found in living organisms are left-handed [40].

® ® [¢] ®
-] [} -]
] 32 ] [#]
] ®
] =] a
a a
® ®
o L]
-] a o
© ®
aj
-] a -]
o ] m
0] (] ] ©

Figure 2: A two-dimensional hexagonal lattice with basis. The black
circles show the positions of the lattice vectors, Ny a; + N> ay, where N,
and N, are integers and a, and a; are given by Equation (2). The gray
squares are a two-site basis for this lattice.

Figure 3: A two-dimensional hexagonal lattice with non-standard
primitive vectors. This is the same hexagonal lattice from Figure 2 with
primitive vectors given by Equation (4). Each unit cell still contains
images of the two sites in the basis.

Though not required, it is frequently useful to have a
primitive cell that is uniquely defined. Some lattice reduc-
tion techniques transform a cell into a standard represen-
tation — such as Minkowski, Niggli, and other standards
— which are often unique up to a rotation [41, 42, 43].
However, an alternative distinct primitive representation ex-
ists, known as the Wigner-Seitz cell [44], which exhibits
the symmetry of the lattice. The Wigner-Seitz cell is de-
fined as the locus of all points closer to a given lattice point
than to any other lattice point. We have constructed the
Wigner-Seitz cell for our two-dimensional hexagonal lattice

AXS
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Table E: A list of the various space group notations. The space group number, orientation, Hermann-
Mauguin symbol, Hall symbol, International symbol, and Schinflies symbol are listed.

Number Orientation Hermann-Mauguin Hall International  Schonflies
1 P1 Pl Pl ct
2 P-1 Pt P1 Ct
3 b P121 P2y P2 C)
4 b P1211 P2yb P2 C3
5 bl ciz21 C2y c2 c3
6 b Pim1 P2y Pm C;
7 bl Pict P -2yc Pc Cc?
8 bl Ciml C-2y Cm c3
9 bl Cicl C-2yc Ce c?
10 b Pi2ml -P 2y P2fm cly
11 P12l/m1 -P 2yb P2y /m o
12 bl C12/mil -C2y C2/m c3,
13 bl P12/t -P 2yc P2fe Cyy
14 b1 P12lfc1 -P Zybe P2/c 3
15 bl Cl2kel -C2y¢ C2/e cs,
16 P222 P22 P222 D}
17 P2221 P2c2 P22, D?
18 P21212 P22ab P212:2 D}
19 P212121 P 2ac 2ab P22, D}

20 C2221 C22 €222, D3
21 c222 C22 C222 DS
22 F222 F22 F222 D;
23 1222 122 1222 Dt
24 1212121 12b2c 1212:2, D}
25 Pmm?2 P2-2 Pmm2 cl,
26 Pmec2l P2c-2 Pmc2, cz,
27 Pcc2 P2-2c Pcc2 c3
28 Pma2 P2-2a Pma2 ch
29 Pca2l P 2c-2ac Pca2; 3,
30 Pnc2 P2 -2be Pnc cs,
31 Pmn 2] P 2ac -2 Pmn2, cl,
32 Pba2 P2-2ab Pba2 cs,
33 Pna2l P2c-2n Pna2; 3,
34 Pnn?2 P2-2n FPrn2 cy
35 Cmm?2 C2-2 Cmm2 cil
36 Cmc21 C2c-2 Cme2, ci?
37 Cece2 C2-2 Cec2 cy
38 Amm2 A2-2 Amm2 cy
39 Abm2 A2-2c Aem2 cy3
40 Ama2 A2-2a Ama2 cye
41 Aba? A2 -2ac Aeal o
42 Fmm2 F2-2 Fmm?2 C
43 Fdd2 F2.2d Fdd2 3
44 Imm?2 12-2 Imm2 3
45 Iba?2 12-2¢ Tba2 c
46 Ima2 12-2a Ima2 Cg‘z
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Table | {continued): A Hst of the various space group notations. The space group number, orientation,
Hermann-Mauguin symbeol, Hall symbol, International symbol, and Schonflies symbotl are listed,

Number Orientation Hermann-Mauguin Hali International ~ Schénflies
47 P 2/m 2/m 2/m P22 Pmmm D;h
48 2 P2m2/m2m:2 -P 2ab Zbc Pnnn D%h
49 P 2/c 2/c 2/m -P22¢ Peem Dgh
50 2 P 2/b 2fa 2/n:2 -P 2ab 2b Pban D3,
51 P 21/m 2/m 2/a -P2a2a Pimma D3,
52 P2/n21/n2/a -P2a2bc Pnna DS,
53 P2/m2/n2l/a -P2ac2 Pmna D;,l
54 P2lfc 2fc2fa -P 2a 2ac Peca Dgn
55 P21/ 21/a2/m -P 2 2ab Pbam Dg},
56 P21/c21/c2/n -P 2ab 2ac Peen Dég
57 P 2/b21fc 21/m -P2c2b Pbcm Dy}
58 P21/n2i/Mm2/m -P22n Prnm D;ﬁ
59 2 P21j/m 21/m2/n:2 -P 2ab 2a Pmmn DS;
60 P21/b2/c 21/n -P 2n 2ab Pbcn Dy}
61 P21/b21/c21/a -P 2ac 2ab Pbca I
62 P2i/m21/m2l/a -P 2ac 2n Prma Dég
63 C 2/m 2/c 21/m -C22 Crmcm D)
64 C 2fm2fc21fa -C2bc2 Cmea Déﬁ
65 C 2/m 2/m 2/m C22 Crirnm Diz
66 C 2/c 2fc 2/m -C22 Ceem D%g
67 C2/m2/m 2fa -C2b2 Cmma D3,
68 2 C 2fc 2fc 2fa:2 -C 2b 2bc Ceca D%%
69 F 2/m 2/m 2/m F22 Frumm pZ
70 2 F 2/d 2/d 2/d:2 -F 2Zuv 2vw Fddd D%‘,t
71 12/m 2/m 2/m 2122 Tmmm D%fl
72 12/b2/a2/m -122¢ Ibam Dgg
73 12/b 2/c 2/a -12b2¢ Ibea ni
74 12/m 2/m 2fa -12b2 Imma D%ﬁ
75 P4 P4 P4 ci
76 P41 P 4w P4, c:
77 P42 Pdc P4, Ci
78 P43 P 4cw P4y oy
79 14 14 14 3
80 141 I 4bw 14, Cg
81 P-4 P-4 P4 Si
82 1-4 1-4 iz s?
83 P4/m P4 Pdjm C}m
84 P 42/m -P 4c Pdyfm Cﬁh
85 2 P 4/n:2 -Pda P4fn c3
86 2 P42/m:2 -P 4bc Py /n ch
87 14/m -14 Idfm th
88 2 T41/a:2 -I4ad Idyfa Cgh
39 P422 P42 P422 D}
90 P4212 P 4ab 2ab P42,2 D2
91 P4122 P 4w 2¢ P4;22 D}
92 P41212 P 4abw 2nw P4,2,2 D}
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Table 1 {continued): A list of the various space group notafions. The space group number, orientation,
Hermann-Mauguin symbol, Hall symbol, International symbol, and Schénflies symbol aze listed.

Number Orientation Hermann-Mauguin Hall International  Schénflies
93 P4222 Pdc2 P4;22 D;
94 P42212 P4n2n P42,2 Dt
95 P4322 P4cw 2¢ P4322 D}
96 P43212 P 4nw 2abw P432,2 DS
97 1422 142 1422 D
98 14122 14bw 2bw 14,22 DY
99 P4mm P4-2 P4mm cl,
100 P4bm P 4.2ab Pdbm i,
101 P42cm P4c-2c Phycm 3,
102 P42nm P4n-2n Pdynm ci,
103 Pdcc P4 -2c Pécc cs
104 Pdnc P4-2n Pénc s,
105 P42me P4c-2 Pdyme cl,
106 P42bc P 4c -2ab Pybc o
107 I4mm 14-2 I4mm c3,
108 I4cm 142 Hem clo
109 141 md [ 4bw -2 14ymd cy
110 I4lcd I4bw -2¢ 14\cd cy?
11 P-42m P-42 P42m D},
112 P-42c P-42¢ P42c D3,
113 P-421m P-4 2ab P42im D3,
114 P42lc P-42n P42ic D3,
115 P-4m?2 P-4-2 Pam2 3,
116 P-4c2 P-4-2 P4c2 D§,
117 P-4b2 P-4 -2ab P42 D},
118 P-4n2 P-4 -2n Pan2 D8,
119 I-4m2 1-4-2 Fam2 D3,
120 I-4c2 1-4-2¢ TAc2 D
121 1-42m 1-42 142m Di}
122 [-42d I-42bw 142d Dl
123 P 4/m 2/m 2/m P42 PA[mmm Dl,
124 P 4/m 2/c 2/c P42c Pdimee D,
125 2 P 4/n 2/b 2/m:2 -P4a2b P4{nbm D,
126 2 Pd/mn2/mn 2/c:2 -P 4a 2bc P4 innc Djh
127 P4/m21/b2/m -P 4 2ab P4 {mbm D3,
128 P 4/m 21/n 2fc -P42n P4fmnc s,
129 2 P4/n21/m 2/m:2 -P4a2a Pafnmm DL,
130 2 P 4/n 21/c 2/c:2 -P 4a2ac P4[nce DE
131 P 42/m 2/m 2/c -Pdc2 P4, fimmc Dgh
132 P 42/m 2/c 2/m Pdc2c P4y fmem Dy}
133 2 P 42/n 2fb 2/c:2 -P 4ac 2b P4y /nbe bl
134 2 P42/n 2/m 2/m:2 -P 4ac Zbc P4y [nnm Dﬁ
135 P 42/m 21/b 2/c -P 4c 2ab Py [mbe Dy
136 P 42/m 21/n 2/m -P4n2n Py [mnm Dl
137 2 P 42/n 21/m 2/c:2 -P 4ac 2a Pdy fnme Dy
138 2 P42Mm2l/c2/m2  -Pdac2ac Py fnem Die
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Tabie I {continued): A list of the various space group nofations. The space group number, orientation,
Hermann-Mauguin symbol, Hall symbol, International symbol, and Schénflies symbol are listed.

Number Orientation Hermann-Mauguin Hall International  Schénflies
139 14/m 2/m 2/m 142 I4[mmm Dy
140 I 4/m 2fc 2/m -142¢ I4{mem D
141 2 141/22/m 2/d:2 -14bd 2 14, famd Dy
142 2 141/a2/c 2/d:2 -14bd 2¢ 14, facd DY
143 P3 P3 P3 o
144 P31 P31 P3 c?
145 P32 P32 P3, c3
146 H R3:H R3 R3 cs
147 P-3 P3 P3 Cy
148 H R-3:H -R3 R3 c3
149 P312 P32 P312 D!
150 P321 P32° P321 D}
151 P3112 P312c (00D P3;12 D3
152 P3121 P312” P3;21 D}
153 P3212 P322c(00-1) P3,12 Dj
154 P3221 P322" P3;21 DS
155 H R 32:H R32" R32 Dj
156 P3ml p3-2” P3m] ci,
157 P3lm P3-2 P3lm c,
158 P3cl P3.2% P3cl cs,
159 P3lc P3-2 P3lc ci,
160 H R3mH R3-2” R3m o
161 H R3cH R3-27% R3c cs
162 P.312/m P32 P3lm D},
163 P-312fc P32 P3le D3,
164 P-32/m1 -P32” P3m] D3,
165 P-32/c1 -P32% P3cl s,
166 H R -3 2/m:H -R327 R3m 3,
167 H R -3 2/c:H R327% Rie D,
168 P6 PG P6 c}
169 P61 P61 P6, oy
170 P65 P65 Pés C;
171 P62 P62 P6; 69
172 P 64 P 64 P, C:
173 P63 P 6c P63 ct
174 P-6 P-6 P6 cl,
175 P 6/m P6 P6/m cl
176 P 63/m P 6c P6y/m 2
177 P622 P62 P622 D}
178 P6122 P612(00-1) P6,22 D?
179 P6522 P652(001) P6522 D}
180 P6222 P622c(001) P6,22 D}
181 P6422 P642c(00-1) P6422 Di
182 P6322 P 6¢ 2c P6322 Dt
183 P6mm P6-2 Pémm cl
184 Pécc P6-2¢ Pécc s,
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Table I (continued): A list of the various space group netations. The space group number, orientation,
Hermann-Mauguin symbol, Hall symbol, International symbol, and Schonflies symbol are listed.

Number Orientation Hermann-Mauguin Hall International  Schonflies
185 P63cm P 6c -2 P6sem 3
186 P63mec P6c-2¢ P63me ci,
187 P-6m2 P-62 P6m2 D},
188 P-6c2 P-6c2 P6c2 D,
189 P-62m P62 P62m D,
190 P-62¢ P-6c-2¢ P62e D3,
191 P 6/m 2/m 2/m P62 P6/mmm DL
192 P 6/m 2/c 2/c P62 P6/mcc 275
193 P 63/m 2/c 2/m Péc2 P63 fmem D,
194 P 63/m 2/m 2/c P6c2e P63/mme D,
195 P23 P223 P23 T
196 F23 F223 F23 T2
197 123 1223 123 T
198 P213 P 2ac 2ab 3 P23 T
199 1213 12b2c3 12;3 T’
200 P 2/m -3 P223 Pm3 T}
201 2 P2n-3:2 -P 2ab 2bc 3 Pn3 T}
202 F2/m -3 F223 Fm3 T}
203 2 F2/d-3:2 -F 2uv 2vw 3 Fd3 T}
204 12/m -3 1223 Im3 T;
205 P21/a-3 -P 2ac 2ab 3 Pa3 TS
206 121/a-3 12b2c3 Ia3 T]
207 P432 P423 P432 0!
208 P4232 P4n23 P4;32 0
209 F432 F423 F432 o}
210 F4132 F4d23 F432 ot
211 1432 1423 1432 0
212 P4332 P 4acd 2ab 3 P4332 o
213 P4132 P 4bd 2ab 3 P4;32 o
214 14132 14bd 2¢3 14,32 o
215 P-43m P-423 Pd3m T}
216 F-43m F-423 F43m T2
217 1-43m 1-423 143m T3
218 P-43n P-4n23 P43n T4
219 F-43c F-4c23 Fd3c T3
220 1-43d 1-4bd 2¢ 3 143d TS
221 P 4/m -3 2/m P423 Pm3m 0,
222 2 P4/n-32/n:2 -P 4a 2bc 3 Pn3n O}
223 P 42/m -3 2/n -P4n23 Pm3n o3
224 2 P42/n-32/m:2  -P4bc2bc 3 Pn3m o}
225 F 4/m -3 2/m -F423 Fm3m o:
226 F4fm -3 2/c Fdc23 Fm3c 0¢
227 2 F4l/d 32/m2  -F4vw2vw 3 Fd3m o]
228 2 F41/d -3 2/c:2 -F d4cvw 2vw 3 Fd3c O;',
229 14/m -3 2/m 1423 Im3m o4
230 141/a-32/d -14bd 2¢ 3 la3d o
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1. Introduction

Symmetry fundamentally characterizes all crystals, estab-
lishing a tractable connection between observed phenomena
and the underlying physical/chemical interactions. Beyond
crystal periodicity, symmetry within the unit cell guides
materials classification (Mehl et al., 2017), optimizes materials-
properties calculations and instructs structure-enumeration
methods (Buerger, 1947, Hart & Forcade, 2008). Careful
exploitation of crystal symmetry has made possible the char-
acterization of electronic (Setyawan & Curtarolo, 2010),
mechanical (Toher et al., 2014, 2017) and thermal properties
(Nath et al., 2016, 2017; Plata et al., 2017) in high-throughput
fashion (Curtarolo et al., 2013), giving rise to large materials-
T_T oL ==  properties databases such as AFLOW (Curtarolo et al, 2012,
6 j’_ Yang et al, 2016; Carrete et al, 2014; Levy et al, 2011,
lar = = = Setyawan & Curtarolo, 2010; Levy, Hart & Curtarolo, 2010a;
; ' ' ' Levy, Chepulskii ef al., 2010; Levy Hart & Curtarolo, 20105;
6 H \ Hart et al., 2013; Mehl et al., 2017; Supka et al., 2017), NoMaD
= (Scheffler & Draxl, 2014), Materials Project (Jain et al., 2011)
and OQMD (Saal et al., 2013). As these databases incorporate
‘$’ # # more properties and grow increasingly integrated, access to
rapid and consistent symmetry characterizations becomes of
© 2018 International Union of Crystallography paramount importance. ><‘><1‘!3 (Z

f‘\
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Central to each symmetry analysis is the identification of
spatial and angular tolerances, quantifying the threshold at
which two points or angles are considered equivalent. These
tolerances must account for numerical instabilities and, more
importantly, for atypical data stemming from finite tempera-
ture measurements or deviations in experimentally measured
values (Le Page, 1987). Existing symmetry platforms, such as
FINDSYM (Stokes & Hatch, 2005; Stokes, 1995), PLATON
(Spek, 2003) and Spglib (Togo, 20174), all cater to different
symmetry objectives, and thus address tolerance issues in
unique ways. The authors of FINDSYM, which is designed for
ease of use, acknowledge that its algorithms cannot handle
noisy data, and it applies no treatments for ill-conditioned
data (Stokes & Hatch, 2005). The PLATON geometry
package, containing the subroutine ADDSYM, allows a small
percentage of candidate atomic mappings to fail and attempts
to capture missing higher-symmetry descriptions (Spek, 2003).
Lower-symmetry descriptions in atomic coordinates can
originate from (i) extraction issues with X-ray diffraction data
(e.g. incorrectly identified crystal system, altered Laue class
within a crystal system and neglected inversion) and (ii) ab
initio relaxations (e.g. lost internal translations) (Baur &
Tillmanns, 1986; Herbstein & Marsh, 1982; Marsh & Herb-
stein, 1983). The Spglib package applies independent toler-
ance scans within subroutines, e.g. in its methods for finding
the primitive cell (getprimitive) and Wyckoff positions
(ssm_get_exact positions), if certain crystallographic
conventions are violated, potentially yielding globally incon-
sistent symmetry descriptions (Togo, 2017a). These packages
present suggested default tolerance values that are largely
arbitrary and often justified a posteriori on a limited test set. In
the general case, or in the event where these global defaults
fail, the packages fall back on user-defined tolerances.
Unfortunately, it is difficult to compare results across packages
outside of these default values because tolerances are defined
differently. FINDSYM and Spglib both offer a tunable atomic
mapping tolerance, along with a lattice tolerance (FINDSYM)
and an angular tolerance (Spglib), whereas PLATON has four
separate input tolerances, each specific to a particular opera-
tion type. Ultimately, these inconsistencies are symptomatic of
an underlying inability to appropriately address tolerances in
symmetry analyses.

Managing input/output formats for these packages also
presents a challenge. FINDSYM and PLATON both read CIF
and SPF files, which are particularly useful for structures
deriving from larger crystal-structure databases, such as the
Inorganic Crystal Structure Database (ICSD) (Bergerhoff et
al., 1983; Belsky et al, 2002) and Cambridge Structural
Database (CSD) (Groom et al., 2016). PLATON also supports
a few other useful input formats, while Spglib has its own input
format. Package-specific formats are useful for the developers,
but create an unnecessary hurdle for the user, who may need
to implement structure-file converters. This is particularly
problematic when package developers change the formats of
these inputs with new version updates, forcing the user to
continuously adapt workflows/frameworks. Additionally, all
output formats are package specific, with a medley of

symmetry descriptions and representations provided among
the three. The assortment of outputs presents yet another
hurdle for users trying to build custom solutions for frame-
work integration. Furthermore, it forces users to become
locked-in to these packages.

These issues require extensive maintenance on the side of
the user, with little guarantee of the validity of the resulting
symmetry descriptions. In the case of large materials-proper-
ties databases, providing such individual attention to each
compound’s symmetry description becomes entirely imprac-
tical. Herein, we present a robust symmetry package imple-
mented in the automated ab initio computational framework
AFLOW, known as AFLOW-SYM. The module delivers a
complete symmetry analysis of the crystal, including the
symmetry operations for the lattice point group, reciprocal-
space lattice point group, factor group, crystal point group,
dual of the crystal point group, symmetry-equivalent atoms,
site symmetry and space group (see Appendix A for an
overview of symmetry groups). Moreover, it provides general
crystallographic descriptions including the space-group
number and label(s), Pearson symbol, Bravais lattice type and
variations, Wyckoff positions, and standard representations of
the crystal. The routine employs an adaptive structure-specific
tolerance scheme capable of handling even the most skewed
unit cells. By default, two independent symmetry procedures
are applied, enabling corroboration of the characterization.
The scheme has been tested on 54 000 compounds from the
ICSD in the http//www.aflow.org/ repository, showing
substantial improvement in characterizing space groups and
lattice types compared with other packages. Along with a
standardized text output, AFLOW-SYM presents the results
in JavaScript Object Notation (JSON) for easy integration
into different workflows. The software is completely written in
C++ and it can be compiled in UNIX, Linux and MacOSX
environments using the gcc/g++ suite of compilers. The
package is open source and is available under the GNU-GPL
license. An AFLOW-SYM Python module is also available to
facilitate integration with other workflow packages, eg.
AFLOWr (Supka et al, 2017, Agapito et al, 2015) and
NoMaD (Scheffler & Draxl, 2014). Thus, AFLOW-SYM
serves as a robust one-stop symmetry shop for the materials-
science community.

2. Methods
2.1. Periodic boundary conditions in skewed cells

Analyzing the symmetry of materials involves determining
the full set of their isometries. Algorithmically, candidate
symmetry operators are applied to a set of atoms and vali-
dated if (i) distances between atoms and their transformed
counterparts are within a mapping tolerance &, and (ii) the
mappings are isomorphic (one-to-one). For convenience, ¢ is
defined in units of a Euclidean space — dngstréms in this case.
An explicit mapping function is defined, indicating whether

atom mappings are successful: NN S"i
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true if |||ic ” <&
false otherwise ’

Al = { W

where d_ is the Cartesian distance vector between an atom and
a transformed atom. Symmetries of the crystal are discovered
when successful isomorphic mappings — given by equation (1)
— exist between all of the original and transformed atoms.
Under periodic boundary conditions, the minimum distance
for the mapping function is identified by considering equiva-
lent atoms of nearby cells [so-called method of images
(Hloucha & Deiters, 1998)]:

where a, b, ¢ are the lattice vectors; n,, n, n, are the indices of
neighboring cells; and d™ is the globally optimal Cartesian
distance vector. In the simplest case of a purely orthorhombic
cell, the approach requires exploration of the 26 surrounding
unit cells (-1 < n,,n,, n. <1). However, additional neigh-
boring cells should be considered with increased skewness of
the lattice vectors (see §2.7), making it prohibitively expensive.
Instead, many algorithms minimize the distance vector
through a greedy, bring-in-cell approach (Hloucha & Deiters,
1998). Working with fractional coordinates, each component ¢
of the distance vector d; is minimized using the nearest-integer
function [nint (Hloucha & Deiters, 1998)]:

d™ = min (d, + n,a+n,b + n.c), (2) s
Hyltp M dr,s =d;; — m'nt(dm) Vi,
~min ~~min
d. =Ld; . 3)
(a) Cartesian Fractional

(%)

Cartesian

Fractional

(©)

2D fractional

Figure 1

Visualizations of space warping with a basis transformation. (a) To validate a candidate mirror
operation (described by #,,) on a crystal (blue atoms), the operation is applied to yield a
transformed crystal (hollow orange atoms superimposed on the original crystal). The true minimum
distance between the blue and orange atoms is resolved in Cartesian space, indicated by the green
d™" vector. However, the bring-in-cell method determines another periodic image to be closer,
highlighted by the dashed red vector. The mismatch i obscured in fractional space, where the red
vector appears smaller than the green, indicated by d; . (b) An atom is placed in the middle of the
lattice with a surrounding sphere of radius & Mapping occurs when the position of an atom
transformed by a symmetry operator is within the sphere. The size and shape of the sphere are
warped with a basis transformation (Cartesian to fractional): uniform compression occurs in cubic
cells, oblate compression in orthorhombic cells, non-uniform (sheared) compression in triclinic
lattices. (¢} Two-dimensional illustration of how the tolerance (&) warps in fractional space for cubic,
orthorhombic and triclinic lattices. The orange circle with radius &' in fractional coordinates

where L is the column-space nﬁ;mai'l[‘rix
Egr}:i)nresentation of the lattice and d, is
d; converted to Cartesian coordinates
for the mapping determination in
equation (1).

While it is a convenient shortcut, the
bring-in-cell minimum distance is not
generally cquivalegiﬂ lo thPT globally
optimized distance: d.  # d"" (see Fig.
la). A component-by-component mini-
mization of the distance vector assumes
independent basis vectors (no skew-
ness) and neglects potentially closer
images that are only considered by
exploring all neighboring cells. Occur-
rence of a distance mismatch depends
on the lattice type and compromises the
integrity of the mapping determination.
The issue becomes particularly elusive
in fractional coordinates, where the size
and shape of the cell are warped to yield
a unit cube as shown in Fig. 1(b). The
greater the anisotropy of the lattice, the
larger the warping. Fig. 1(c) illustrates
how the tolerance changes between
Cartesian and fractional space. In the
general case, a spherical tolerance in
Cartesian coordinates warps into an
ellipsoid in fractional coordinates.
Hence, the criteria for successful
mappings in fractional space are direc-
tion dependent unless the distance is

sufficiently small, ie within the
circumscribed sphere of radius &
(highlighted in orange). Distances

within &’ in fractional space always map
within & in Cartesian space, but a robust
check (global optimization) is needed
for larger distances to account for the
extremes of the ellipsoid. Since most

distances outside of & do not yield ‘
h4{F Q)
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mappings, such a robust check is generally wasteful. Instead,
more useful insight can be garnered from Fig. 1(¢): tolerances
sufficiently bounded by the skewness can still yield a proper
mapping determination using the inexpensive bring-in-cell
algorithm.

The goal is to define an upper tolerance threshold to safely
ensure that the bring-in-cell minimum (d ) and global
minimum (d™") yield the same mapping results, in spite of a
distance mismatch:

: ~min .
Map, g (d7"") = map,en(d. ) | &< [a7"],
. ~min
vd, | 4" #d, . “

A mismatch is encountered when the image identified by the
bring-i -in-¢ cell method is not the optimal neighbor; therefore:
ae = d . A suitable threshold needs to overcome the
difference between the two methods for all mlsn‘}gﬂtch possi-
bilities, i.e. &£ would need to be below ™" or above d, to yield
a ncj:ignsmtent mapping determination. A threshold greater than
d. is ruled out to ensure that ¢ is always smaller than the
minimum interatomic distance [d™(™"], making it possible to
distinguish nearest neighbors. To find a tolerance in the
remaining region (¢ < ||d™"||), the largest mismatch possible
should be addressed directly, which yields the smallest d™"
and thus the most restrictive bound on the tolerance. Given
the angles between the lattice vectors (w, 8, ¥), a maximum
skewness is defined as

&ax — max(cos @, cos B, cos ¥), 5)

where the cosine of the angle derives from the normalized, off-
diagonal terms of the metric tensor. &, lies in the range [0, 1),
where £, = 0 characterizes a perfectly orthorhombic cell. A
suitable maximum mapping tolerance is heuristically defined
as

Emax = (1 = gmax)d:n(min)! (6)

which appropriately reduces d"™®™™ (an absolute upper bound
for the tolerance to maintain resolution between atoms) with
increasing skewness. The form of the coefficient (1 — cosf)
decays quickly with basis-vector overlap (of the order of 6%),
ensuring a safe enveloping bound. Tolerances well below &,
should yield the correct mapping determination with the
bring-in-cell approach (in spite of a distance mismatch);

otherwise, the global minimization algorithm should be
employed:
~min .
dmeP — I“df ife € '?max ( )
¢ min (d, +n,L, +n,L, +n L) otherwise
Ry g, He

To demonstrate the robustness of g,,,, extreme hypothetical
cases are presented in Appendix C.

2.2. Adaptive tolerance scheme

While ¢, offers a practical upper tolerance bound for the
choice of the distance minimization algorithm, it offers no
insight for choosing a specific tolerance. Of course, there are
fundamental constraints, such as the minimum interatomic

distance and the precision of the input structure parameters:
Eprecision = € < d™min) but these can span over several orders of
magnitude, throughout which a variety of results are possible.
Fig. 2 illustrates the different space groups that may be
assigned to AgBr (ICSD No. 56551; http://aflow.org/materi-
al.php?id=Agl1Brl_ICSD_56551) with various tolerance
choices (the ICSD reports space group No. 11). Interestingly,
adjacent space-group regions show non-isomorphic subgroup
relations: between space-group Nos. 59 and 11 and between
225 and 166. Of particular concern is the gap highlighted in
Fig. 2(b) between space-group regions 166 and 59. Not
surprisingly, these space groups share no subgroup relations.
These gaps represent problematic regions where noise in the
structural information interferes with the determination of
satisfied symmetry operations, yielding profiles inconsistent
with any possible space group. Rather than an a posteriori
selection of the symmetry elements to include in the analysis,
we employ an adaptive tolerance approach. A radial tolerance
scan is performed surrounding the initial input tolerance g, to
overcome the ‘confusion’ region, as shown in Fig. 2(b). With
each adjustment of the tolerance, the algorithm updates and
validates all symmetry properties and operations, yielding a
globally consistent profile and an effective spatial resolution
for the structure.

To fully characterize a structure’s symmetry, AFLOW-SYM
employs two major symmetry procedures. The first calculates
the symmetry of the crystal in the International Tables for
Crystallography (Hahn, 2002; Wondratschek & Miiller, 2004;
Aroyo, Perez-Mato et al., 2006; Aroyo, Kirov et al., 2006)
(ITC) conventional cell, yielding the space group and Wyckoff
positions. The second resolves the symmetry profile of the
structure in the original (input) representation, including: the
lattice point group, reciprocal-lattice point group, factor
group, crystal point group, dual of the crystal point group,

mcl orc rhi fcc
SG: #11 SG #59 SG #166 SG #225
(@)
| Y T TN I [ N B
l ) I U l T I T I Ll I T I T l 1
o ; 05 1.0
w/, T
i \ l \ ]
I ¥ I ! |
0.1 0.3
lﬂ lnew
Figure 2

Variation of space group with mapping tolerance for AgBr (ICSD No.
56551) as determined by AFLOW-SYM. (a) Space groups and tolerance
ranges identified are as follows (ascending order): 1.0 x 107° to 4.0855 x
10‘2 A is monoclinic (space group No. 11), 4.08556 x 10~* to 164186 x
107" A is orthorhombic (space group No. 59), 2.46281 x 10~ 'to 6. 69605
% 107" A is rhombohedral (space group No. 166) and 6.69606 x 107"

1.0 A is face-centered cubic (space group No. 225). (b) A gap is
highlighted between 1.64186 x 107! to 2.46281 x 10~ A where no
consistent space group is identified. The orange arrows illustrate how the
algorithm scans possible tolerances to find the closest consistent space

group. X Ve £) \
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space group, inequivalent and equivalent atoms, and the site
symmetry. While both routines can be employed indepen-
dently, the two are combined in AFLOW-SYM by default,
affording additional validation schemes to ensure a stricter
consistency.

Ultimately, the combination of the tolerance scan and
integrated workflow (with robust validation schemes) ensures
the automatic determination of a consistent symmetry profile.
While the option remains for a user-defined tolerance (with
and without the scan), AFLOW-SYM heuristically defines two
default tolerance values: tight (g, =de"™"/100) and
loose (E,qe = d™™™ /10). Generally, an expected symmetry
profile (perhaps from experiments) can be found in either of
the two tolerances. If no tolerance is defined, AFLOW-SYM
defaults to the tight tolerance. The tolerance chosen for the
analysis is compared against &, to identify the required
minimization technique to yield consistent mappings [see
equation (7)]. Overall, the AFLOW-SYM tolerance scheme
has been validated against 54 000 entries from the ICSD, and
subsequently applied to all 1.7 million entries stored in the
http://lwww.aflow.org/ repository. The symmetry results can be
retrieved from the AFLOW repository via the REST-API
(Taylor et al., 2014) or the AFLUX Search-API (Rose et al.,
2017).

2.3. Tolerance types and conversions

Outside of mapping distances, there
are a number of relevant quantities for
which an equivalence criterion is

2.4. International Tables for Crystallography standard
representation

One strategy for uncovering a structure’s symmetry profile
is to convert it to a standard form, such as the one defined by
ITC. In this representation, the symmetry operations, space
group and Wyckoff positions are well tabulated, mitigating the
computational expense involved in combinatorial operation
searches. To efficiently explore the possibilities, the algorithm
exploits the lattice symmetry to resolve the crystal symmetry,
from which the conventional cell is defined. The full workflow
is illustrated in Fig. 3.

First, the algorithm finds a primitive representation of the
crystal (of which there are many) by exploring possible
internal translations forming a smaller lattice (Hahn, 2002). To
optimize the search, only the vectors between the least-
frequently occurring atomic species are considered. The
translation vector should preserve cell periodicity, and the
resulting reduced representation should conserve the stoi-
chiometry.

Next, the symmetry of the lattice is determined by calcu-
lating the mirror and n-fold rotation operations. The primitive
cell is expanded from —1 to 1 in each direction (Le Page, 1987)
and combinations of lattice points are considered for defining
the following: (i) mirror operations characterized by a plane

sel lolerance

required, e.g lattice vectors, axes,
angles and symmetry operations.
Instead of defining separate tolerances
for each, AFLOW-SYM leverages the
single spatial tolerance, converting
quantities to Cartesian distances
whenever possible. For vector quan-
tities such as lattice vectors and axes,
the difference is taken, converted to the
Cartesian form (if necessary), and the
Euclidean norm of the resulting vector
is compared with the spatial tolerance.
For angles, each angle 8; is converted to
a straight-line distance d:

d; = X;sin (6), 8)

where X; is the average length of the
angle-defining vectors in Cartesian
space. The two straight-line distances
are subtracted and compared with the
input spatial tolerance. To compare
rotation matrices for a particular lattice,
each matrix is transformed into its
fractional form, resulting in two integer
matrices that can be matched exactly.

Figure 3

reform conventional cell with
crystal symmetry ( j=0 )

oups by paint
group and lattice centering

match generators to ITC

gel Wyckoft positions

g4 complete

Workflow for the algorithm for converting a structure to the standard representation as defined by
International Tables for Crystallography. Functions are represented by blue rectangles and
validation schemes by orange diamonds.

XK
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Table 1
Conventional cell construction rules based on symmetry operations.
Lattice/crystal ~ No. of  No. of n-fold
system mirrors  rotations Conventional cell
Cubic g 3 (fourfold) a, b, c: parallel to three
equivalent fourfold axes
Hexagonal 7 1 (three-/sixfold)  ¢: parallel to three-/sixfold
axis
a, b: parallel to mirror axes
(lal = |b| and B = 120°)
Tetragonal 5 1 (fourfold) «: parallel to fourfold axis

a, b: parallel to mirror axes
(Ja] = |b] and B = 90°)

Rhombohedral 3 1 (three-fsixfold) ¢ parallel to three-/sixfold
axis

a, b: parallel to mirror axes
(la] = |b] and g = 120°)

Orthorhombic 3 — a, b, e: parallel to three
IiITOT axes

Monoclinic 1 — b: parallel to mirror axis
(unique axis)

a, ¢: parallel to two (choice
of three) smallest
translations perpendicular
to b (Hahn, 2002)

a, b, ¢: same as original
lattice

Triclinic 0 —_

(normal f_;.) between two lattice points about which half
the lattice points can be reflected onto the other, and (ii) n-
fold rotations (n € {2, 3, 4, 6}) described by an axis (F,,.go1q) and
angle (6) such that a rotation about F,.q by @ yields an
isomorphic mapping of lattice points. The two types of
operations are illustrated in Fig. 4.

The cardinality of each operation type defines the lattice
system, as detailed in Table 1. If the lattice and crystal systems
are the same, the characteristic vectors of the lattice operators
(B,ror 20 ¥, go1q) and corresponding lattice points define the
lattice vectors of the conventional cell (also outlined in Table
1). For all cases, these lattice vectors are used to construct an
initial conventional cell. The aim is to find a conventional cell
whose corresponding symmetry operators [tabulated in ITC in
Table 11.2.2.1 (Hahn, 2002)] are validated for the crystal,
which can have symmetry equal to or less than the lattice. If a

@“@ @ @ O ®) 9
@ o o '

Nmirror

_JL "/_,,./

@ o O
@ 0 o

Figure 4

Minimum symmetry identifiers of the lattice system: (a) mirror
operations, (b) n-fold rotations. The resulting lattice vectors are denoted
by gray dotted lines.

mismatch in cardinality is encountered, permutations of the
lattice vectors are attempted. Should a mismatch remain after
all permutations have been exhausted, the conventional cell is
re-formed to reflect the crystal symmetry. The re-formed cell
is chosen based on the observed cardinality of the symmetry
operations (refer again to Table 1).

The resulting crystal point-group set and internal transla-
tions (lattice centerings) are then used to filter candidate
space groups. To pin down a space group exactly, the
symmetry elements of the crystal are matched to the ITC
generators, ie. the operations that generate the symmetry-
equivalent atoms for the general Wyckoff position (Hahn,
2002). However, a shift in the origin may differentiate the two
sets of operators; this is a degree of freedom that should be
addressed carefully. The appropriate origin shift should
transform the symmetry elements to the ITC generators, thus
forming a set of linear equations. Consider two symmetry-
equivalent atom positions (x and x') in the crystal,

x =Ux+t, 9)

where U and t are the fixed-point and translation operations,
respectively, between the two atoms. An origin shift O relates
these positions to those listed in ITC:

xire =X+ 0, (10)
e =% + 0. (11)

Applying U to equation (10) and subtracting it from equation
(11) yields

Xire — Uxgre =X + O — Ux — UO. (12)

The ITC translation t;; and the crystal translation t are
related via

tch = t + O = UO. (13)

Combining equations (12)-(13) and incorporating equations
(10)~(11) produces the following system of equations:

I—U)O = (tyrc — 1), (14)

where 1 is the identity. Equation (14) must be solved for each
generator, often resulting in an overdetermined system.
Periodic boundary conditions should also be considered when
solving the system of equations, as solutions may reside in
neighboring cells. If a commensurate origin shift is not found,
the next candidate space group is tested.

With the shift into the ITC reference frame, the Wyckoff
positions are identified by grouping atoms in the conventional
cell into symmetry-equivalent sets. These sets are compared
with the ITC standard to identify the corresponding Wyckoff
coordinates, site-symmetry designation and letter. The
procedure to find the origin shift is similarly applied to
determine any Wyckoff parameters (x, y, z). For some space
groups, the Wyckoff positions only differ by an internal
translation (identical site symmetries), introducing ambiguity
in their identification. In these cases, AFLOW-SYM favors the
Wyckoff scheme producing the smallest enumerated Wyckoff

lettering. X y\(aj\
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After finding the Wyckoff positions,
the algorithm is complete. AFLOW-
SYM returns the space group,
conventional cell and Wyckoff posi-
tions in the ITC standard representa-

change
tolerance

A

| (@)

set tolerance

qget lattice point group

tion.

2.5. Input orientation symmetry algo-
rithm

The standard conventional cell
representation described in the
previous section affords easy access to

get reciprocal lattice point group | ) (b)

get factor group

get crystal point group

the full symmetry profile of the struc-
ture. Nevertheless, other representa-
tions, such as the AFLOW standard
primitive representation (Setyawan &
Curtarolo, 2010), are often preferred
for reducing the computational cost of
subsequent calculations/analyses, such
as density-functional-theory calcula-
tions (Setyawan & Curtarolo, 2010).
While conversions are always possible,
such as with a Minkowski lattice
reduction or as was done to find the
standard conventional cell, in practice
they introduce errors in the structural
parameters, becoming particularly
problematic in ‘confusion’ tolerance

.yes

yes \

get space group

gel equivalent aloms

SIS

yes

get site symmetry - \ | (e)

regions (Fig. 2) and tolerance-sensitive
algorithms, e.g. calculations of force
constants (Jahndtek e al., 2011; Plata et
al., 2017). To mitigate the need for
error-accumulating conversions, a
general-representation symmetry
algorithm is also incorporated in
AFLOW-SYM. The integration of the
two symmetry algorithms affords
additional validation schemes that
combat ‘confusion’ tolerance regions and ensures an overall
stricter consistency. The full workflow of this algorithm is
outlined in Fig. 5. For descriptions of the different symmetry
groups, refer to Appendix A.

First, the point group of the lattice is calculated by finding
all identical lattice cells of an expanded grid (see §2.7). The
unique set of matrices that transform the rotated cells to the
original cell define the lattice point group, as depicted in Fig.
5(a). The search first considers all lattice points within a radius
no smaller than that of a sphere encapsulating the entire unit
cell. These points define the candidate lattice vectors (origin to
lattice point), and those not of length a, b or ¢ (lattice-vector
lengths of the original cell) are eliminated. Next, all combi-
nations of these candidate lattice vectors are considered,
eliminating sets by matching the full set of lattice parameters
(lattice-vector lengths and angles of the original cell). The
transformation matrix is calculated as

Figure 5

diamonds.

e 'V'g,-ves

complete

Workflow for the algorithm for calculating the symmetry operations of the system in its original
representation. Functions are represented by blue rectangles and validation schemes by orange

U, =L (15)

where U, is the Cartesian form of the transformation (rota-
tion) matrix, L is the original, column-space matrix repre-
sentation of the lattice and L’ is the rotated lattice. The
fractional form of the transformation matrix (U,) is
similarly derived replacing L and L' with their fractional
counterparts (the fractional form of L is trivially the identity
matrix).

The calculation of the lattice point group allows rapid
determination of its reciprocal-space counterpart, describing
the point-group symmetry of the Brillouin zone. The trans-
formation of symmetry operators is straightforward, following
standard basis-change rules in dual spaces. A contragredient
transformation converts the real-space form of the operator to
its reciprocal counterpart, which is trivial for the Cartesian
form of the operator (orthogonal matrix): SN (
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V. =) =1
=Y, (16)

where U /U; and V. /V; are the Cartesian/fractional forms of
the symmetry operator in real and reciprocal spaces, respec-
tively (Sands, 1982).

Next, the coset representatives of the factor group are
determined, characterizing the symmetry of the unit cell.
These operations are characterized by a fixed-point rotation
(lattice point group) and an internal translation that yield an
isomorphic mapping among the atoms. The smallest set of
candidate translation vectors can be found among atoms of
the least frequently occurring species. This symmetry
description is represented by Fig. 5(b).

The point group of the crystal is then extracted from the
coset representatives of the factor groups. By exploiting the
homomorphism (or isomorphism for primitive cells) between
the factor group and the crystal point group, the internal
translations of the coset representatives are removed and the
unique elements yield the crystal point group. This is
portrayed in Fig. 5(c). The dual-space counterpart of the
crystal point group is derived by performing the conira-
gredient transformation, as shown in equation (16).

The space-group operations are similarly derived from the
coset representatives of the factor group. The space group
describes the symmetry of the infinitely periodic crystal,
resulting from the propagation of the unit-cell symmetry
throughout the lattice. A finite set of space-group operators is
generated by applying the lattice translations to each of the
coset-representative operations out to a specified radius. The
operation is depicted in Fig. 5(d).

The coset representatives of the factor group also resolve
the symmetry-equivalent atoms (Wyckoff positions). Atoms
that are symmetry-equivalent map onto one another through a
coset-representative operation. This organization is conve-
nient for calculating the site symmetry of each atom site in the
crystal. The site symmetries, or site point groups, are exposed
by centering the reference frame onto each atomic site and
applying the operations of the crystal point group, as illu-
strated in Fig. 5(e). To expedite this process, the site symme-
tries are explicitly calculated for all inequivalent atoms. They
are then propagated to equivalent atoms with the appropriate
change of basis (dictated by the coset representative mapping
the inequivalent atom to the equivalent atom).

2.6. Consistency of symmetry

There are a finite number of operation sets that a crystal can
exhibit (Giacovazzo et al., 2011). A set of symmetry operations
outside of those allowed by crystallographic group theory are
attributed to noisy data, thus warranting the adaptive toler-
ance scan. Numerous symmetry rules are validated throughout
the AFLOW-SYM routines. The list of consistency checks is:

(i) Point group (lattice/crystal) contains (at the very least)
the identity element.

(ii) Point group (lattice/crystal) matches one of 32 point
groups.

(iii) Coset representative of the factor group is an integer
multiple of the crystallographic point group (homomorphic/
isomorphic condition).

(iv) Space-group symbol decomposes into the crystal-
lographic point-group symbol by removing translational
components (with the exception of derivative structures).

(v) Number of symmetry-equivalent atoms is divisible by
the ratio of the number of operations in the factor and crystal
point groups.

(vi) Space-group and Wyckoff positions match ITC
conventions (Hahn, 2002).

2.7. Exploring the atomic environment

A description of the local atomic environments in a crystal
is required for determining the atom coordinations and atom/
lattice mappings. Depending on the cell representation, an
expansion is generally warranted for sufficient exploration of
the nearest neighbors. Here, an algorithm is outlined for
determining the number of neighboring cells to explore in
order to capture the local environment within a given
exploration radius (rypee). In AFLOW-SYM, the default
exploration radius is the largest distance between any two
lattice points in a single unit cell. First, the normal of each pair
of lattice vectors is calculated and scaled to be of length 7,0,
e.g My =Tgppeb X ¢/|[bxc|, where b and ¢ are lattice
vectors. Next, the scaled normals are converted to the basis of
the lattice, e.g n{ =L 'n;, where L is the column-space
matrix representation of the lattice. The magnitude (rounded
up to the nearest integer) of the ith component of the n! vector
reveals the pertinent grid dimensions (d;, d,, d;). A uniform
sphere of radius r;,,. centered at the origin fits within a three-
dimensional grid spanning [—d;, d,).

3. Results

Highlighted here are benchmarks to compare the various
standard symmetry packages: AFLOW-SYM, Spglib,
FINDSYM and PLATON. The results are calculated with the
most recent versions available for download: (i) AFLOW
version 3.1.169, (ii) Spglib version 1.10.2.4, (iii) FINDSYM
version 5.1.0, (iv) PLATON version 30118.

The default tolerances are employed as reported by the
authors: (i) AFLOW SYM: &gy = dmmin) 1100, (i) Spglib:
symprec =1 x 1073 A, angle_tolerance derives from
symprec [default listed on the web page (Togo, 20175)], (iii)
FINDSYM: Elattice = 1x IO_SA eatomlcposnmu =1x 10_3 A
[default from web interface (Stokes et al, 2017)], (iv)
PLATON: €. = 1.00°, &,41i0n = 025 A, &, =025 A,
Erransiation = 0-25 A (Le Page, 1987).

Alternative tolerance values are also used for Spglib,
FINDSYM and PLATON. In general, the alternative toler-
ances are 100 times the default tolerances, except in the case of
PLATON, where the default tolerances are divided by 100: 6]
Spghb symprec =1 x 1073 A, (11) FINDSYM: &, = 1 %
1073 A, - — 1071 A, (iii) PLATON: €, =

inversion
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Table 2
Mismatch counts between reported and calculated space groups for
entries in the ICSD.

The test set is comprised of 54 015 ICSD entries stored in the http:/
www.aflow.org/ repository, as of 6 October 2017. The columns indicate the
number of entries whose space group, lattice type and crystal family do not
match those reported by the ICSD. The results using the user-defined/non-
default tolerance values for Spglib, FINDSYM and PLATON are shown in
parentheses. For more details, refer to the supporting information.

No. of No. of No. of No. with
space-group lattice crystal system  space group
Package mismatches  mismatches mismatches not found
AFLOW-SYM 834 420 377 0
Spglib 10022 (3389) 9644 (2917) 9523 (2832) 0 (0)
FINDSYM 3540 (1067) 3066 (531) 2982 (483) 127 (156)
PLATON 3000 (1217) 1092 (588) 1083 (486) 195 (1351)F

1 Indicates two entries for which the space-group calculation exceeded 48 h.

=25 % 10_3 A, € ranslation

inversion

0.01°, £, ion = 2.5 x 1072 A, £
=25 x 107 A,

The results from the alternative tolerances are denoted
by *.

3.1. Accuracy of space-group analyses

The CIF files stored in the ICSD contain information such
as the structural parameters and atomic species/positions, as
well as the space group (often reported from experiments),
publication date and citation. The experimentally reported
space-group information provides a unique validation oppor-
tunity for the various symmetry packages. The mismatch
counts between the reported and calculated space groups are
shown in Table 2. The counts are additionally broken down by

800
9000

700
6000
3000
0 _—n— A
&

mismatch count
H w [=1]
[=] (= (=]
[=) [=) (=]

w
o
o

lattice and crystal system (Fig. 6) to highlight the severity of
the mismatch. The full comparison of results is provided in the
supporting information, organized in tables by the reported
crystal system, with mismatches highlighted in red.

AFLOW-SYM shows the best agreement with the ICSD
with a deviation of about 1.5% (reduced to 1.3% if the
mismatch is rectified at the loose tolerance). The mismatch is
almost halved when comparing only the lattice and crystal
systems, suggesting the algorithm found similar/nearby space
groups (e.g. see Fig. 2). Using their respective default toler-
ances, PLATON performs second best with a 5.6% deviation,
followed by FINDSYM and Spglib with deviations of about
6.6% and 18.5%, respectively. With the alternative tolerances,
the overall number of mismatches decreases for each package:
PLATON reduces to 2.3%, FINDSYM reduces to 2.0% and
Spglib reduces to 6.3%. Table 2 also shows that there are a
number of systems for which FINDSYM and PLATON are
unable to identify any space group.

Fig. 6 illustrates the space-group mismatch from each
package organized by lattice type. Overall, AFLOW-SYM is
the most consistent with the ICSD for all lattice types for both
the default and alternative tolerances, except for cubic systems
where FINDSYM has one less mismatch than AFLOW-SYM
using the alternative tolerance. The default tolerance values
certainly play a role in the large deviation count, e.g. a tighter
tolerance can yield a lower symmetry than expected. This is
evident with hexagonal and rhombohedral lattices, where
Spglib resolves isomorphic subgroups neglecting the three-/
sixfold rotations (see the supporting information). However,
increases in tolerance do not necessarily yield more consistent
space-group determinations. Fig. 6 shows that the default
tolerance is more accurate than the alternative tolerance for

AFLOW
FINDSYM
FINDSYM*
Platon
Platon*
Spglib
Spglib*

7777

200
100
0 el il ! | /. -ﬂ
orc orcc orci orcf tet bct hex rhi cub bce fece
lattice

Figure 6

Breakdown of space-group mismatches with the ICSD organized by lattice type. The lattice types are derived from the space-group number reported in
the ICSD. The superscript + indicates the results using the user-defined/non-default tolerance values. The lattice abbreviations are as follows: triclinic
(tri), monoclinic (mel), base-centered monoclinic (mclc), orthorhombic (ore), base-centered orthorhombic (orcc), body-centered orthorhombic (orci),
face-centered orthorhombic (orcf), tetragonal (tet), body-centered tetragonal (bct), hexagonal (hex), rhombohedral (rhl), cubic (cub), body-centered

cubic (bee), and face-centered cubic (fcc).
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Table 3
List of the symmetry descriptions provided by each of the four packages.

The superlattice analysis refers to the structure symmetry if each atomic site is
decorated equally (same atom type), while crystal spin indicates the structure
symmetry including the magnetic moment of each atom. Adding the keyword
EQUAL to the Platon command performs a superlattice analysis.

Table 4
List of operation representations provided by AFLOW-SYM compared
with Spglib.

The internal translations are only applicable for the coset representative of the
factor-group and space-group symmetry operators, Likewise, the lattice
translations are only applicable for the space-group symmetry operators.

Symmetry AFLOW-SYM  Spglib  FINDSYM  PLATON Operator information AFLOW-SYM Spglib
Lattice i Operator type N
Superlattice ! +/ (EQuUAL) Hermann-Mauguin o
Reciprocal lattice s Schonflies &l
Crystal il it A/ Vv Transformation matrix (Cartesian) o
Crystal spin A o V Transformation matrix (fractional) v W/
Generator matrix N
50(3) coefficients (L,, L,, L,) o
o Angle A
the triclinic (tri) and body-centered tetragonal (bcet) systems Axis N
calculated by Spglib and FINDSYM, respectively. To guar- ~ Quaternion (vector) v
. , Quaternion (2 x 2 matrix) v
antee consistent symmetry results, users of Spglib, FINDSYM  Quaternion (4 x 4 matrix) J
and PLATON should tune the tolerance for each system. The su(2) coefficients (Pauli) o
structure-specific tolerance choice and adaptive tolerance  nversion Boolean , v
; ; Internal translation (Cartesian) &)
scheme incorporated into AFLOW-SYM allow for the auto-  [niernal translation (fractional) ¥ 7
matic calculation of results that are generally consistent with Atom index map Vv
experiments. ‘I'}t:’t’_“ t{pe “l‘a:’, Yot :5
5 . attice translation es1an
Overall, the results indicate the strength of the AFLOW- Tdttice translation (fmcﬁ;:fal) J
SYM approach. Other packages can reach similar perfor-
mance to AFLOW-SYM, but they require continuous ad hoc
user adjustments of tolerances, possibly producing results Furthermore, AFLOW-SYM presents the symmetry

incommensurate with other characteristics of the systems, such
as its Pearson symbol. Only the self-consistent approach of
AFLOW-SYM is ripe for the automation required by auton-
omous materials design.

3.2. Symmetry characterizations and representations

Of primary concern among the various standard packages is
the identification and characterization of crystal symmetry, i.e.
a symmetry description considering the lattice and basis of
atoms. In addition, AFLOW-SYM characterizes crystals with a
sequence of symmetry-breaking features, including the lattice,
superlattice (lattice with a uniform basis), crystal and crystal
spin. With the progression of symmetry breaking, each char-
acterization offers a new dimension of physical insight, and is
of particular importance for understanding complex
phenomena (Matano et al., 2016). The suite of characteriza-
tions offered by each package is presented in Table 3.! With
integration into the automated framework AFLOW, new tools
and symmetry descriptions will continue to be incorporated.
The forums at http:/aflow.org/forum/ are the venues for
presenting updates and discussing new functionalities.
Anticipated future work includes going beyond translationally
invariant structures and characterizing disordered/off-stoi-
chiometric structures (Yang et al., 2016; Perim et al., 2016).

1 Some packages provide more information than listed in Table 3. For
example, PLATON presents additional useful structural/chemical information
such as bonding, coordination, planes and torsions. However, the comparison
presented in Table 3 is limited to symmetry information pertaining to space
groups.

2 FINDSYM and PLATON do provide the general Wyckoff position, although
they do not explicitly present the symmetry operators.

operations in a wealth of representations. Both AFLOW-SYM
and Spglib explicitly offer representations for the symmetry
operations.? Table 4 compares the operation representations
provided by the two packages. Both provide the unit-cell
symmetry operators (coset representatives of the factor
group). AFLOW-SYM offers the symmetry operations in the
rotation-matrix (Cartesian and fractional) and axis-angle,
generator and quaternion representations (Karney, 2007,
Fritzer, 2001), while Spglib only provides the rotation-matrix
representation in its fractional form. AFLOW-SYM also
presents the corresponding mappings for each symmetry
operation, almost entirely eliminating the need to reapply the
operators for symmetry-reduced analyses such as calculating
the force constants (Jahndtek et al., 2011; Plata et al., 2017).
Along with the factor-group coset representatives, AFLOW-
SYM provides the lattice point group, reciprocal-lattice point
group, crystal point group, dual of the crystal point group, site
point group and space-group symmetry operators. Catering to
electronic structure calculations, AFLOW-SYM also returns
additional symmetry information not explicitly provided by
other routines, such as the Pearson symbol, Bravais lattice
type and Bravais lattice variation, necessary for constructing
the most efficient Brillouin zone (Setyawan & Curtarolo,
2010). The full set of descriptions and representations offered
by AFLOW-SYM is detailed in Appendix B.

4. Using AFLOW-SYM
4.1. Input/output formats

AFLOW-SYM reads crystal-structure information from a
geometry file containing the lattice vectors and atomic coor-
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dinates (coordinate model), which is treated as the bona fide
representation of the structure. Information can be lost during
the transcription of the X-ray diffraction/reflection data to the
coordinate model, resulting in a lower-symmetry profile. While
a means to verify the two representations offers higher-fidelity
symmetry descriptions, the diffraction data are not nearly as
accessible as the coordinate-model representation. Further-
more, the geometry file is the de facto input format for ab initio
packages and thus AFLOW-SYM resolves the material’s
symmetry based on this representation.

With AFLOW-SYM well integrated into the high-
throughput ab initio software package AFLOW, it can process
many standard input file types, including that of the ICSD/
CSD (Bergerhoff et al., 1983; Belsky et al.,, 2002; Groom et al.,
2016) (CIF), VASP (Kresse & Hafner, 1993, 1994; Kresse &
Furthmiiller, 1996a,b) (POSCAR), QUANTUMESPRESSO
(Giannozzi et al., 2009), ABINIT (Gonze et al.,2002) and FHI-
AIMS (Blum et al., 2009).

Furthermore, all symmetry functions support the JSON
object output format. This allows AFLOW-SYM to be
employed from other programming languages such as Java,
Go, Ruby, Julia and Python, facilitating smooth integration
into numerous applications and workflows (Supka et al., 2017;
Scheffler & Draxl, 2014). These functionalities can be accessed
by either the command line or a Python environment. A
summary of the output for each command is provided in
Appendix D2.

4.2, Command-line options

There are three main functions that provide all symmetry
information for a given input structure. These functions allow
an optional tolerance value (tol) to be specified via a number
or the strings ‘tight’ or ‘loose’ corresponding Lo &gy, and &5,
respectively. To perform the symmetry analysis of a crystal, the
functions are called with the following commands.

aflow ——aflowSYM[=(tol)] [~ —print=txt| json]<file:
Calculates and returns the symmetry operations for the lattice
point group, reciprocal-lattice point group, coset representa-
tives of the factor group, crystal point group, dual of the crystal
point group, site symmetry and space group. It also returns the
unique and equivalent sets of atoms.

aflow — —edatal= (tol)] [~ —print = txt| json] < file:
Calculates and returns the extended crystallographic
symmetry data (crystal, lattice, reciprocal lattice and super-
lattice symmetry), while incorporating the full set of checks
[§2.6, (i)—(vi)] for robust symmetry determination.

aflow — —sgdata[= (tol}] [~ —print = txt| json] < file:
Calculates and returns the space-group symmetry of the
crystal, while only validating that the symmetry descriptions
match with the ITC conventions [§2.6, (vi)].

Square brackets [...] indicate optional arguments. The
— — print flag specifies the output format. The — — aflowSYM
function stores the isometries of the different symmetry
groups to their own files
aflow.(group).json. The (group) labels are as follows:
(lattice point group), pgroupk (reciprocal-

aflow.(group).out or

pgroup

from aflow_sym import Symmetry
from pprint import pprint

with open('test.poscar', 'r') as input_file:

sym = Symmetry(aflow.executable='./aflow’)

output = sym.get_edata(input_file)

pprint Coutput)
Figure 7
An example Python script that leverages the AFLOW-SYM Python
module to return a dictionary containing the relevant symmetry
information. The optional tolerance (tol) and magnetic moment

(magmoms) arguments can be specified with each method. A copy of
this script is available for download in the supporting information.

lattice point group), fgroup (coset representatives of the
factor group), (crystal point group),
pgroupk xtal (dual of the crystal point group), agroup (site
symmetry) and sgroup (space group).

Crystal spin symmetry functionality is also available in
AFLOW-SYM. The magnetic moment of each site (collinear
or non-collinear) can be specified for each of the
commands listed above by adding the magnetic moment
flag: [ —magmom =m1,m2,...|INCAR|OUTCAR]. The magnetic
moment information can be specified in three formats: (i)
explicitly via my, m,, ..., m, in the same order as the input file
(or my .,m, ,,my ,,m, ..., m, for non-collinear), (ii) read
from the VASP INCAR or (iii) the VASP OUTCAR.
Magnetic moment readers for other ab initio codes will be
added in later versions.

pgroup_xtal

4.3. Python environment

Given the recent prevalence of Python programming, we
offer a module that employs AFLOW-SYM within a Python
environment (see Appendix D1). It connects to a local
AFLOW installation and imports the AFLOW-SYM results
into a Symmetry class. A Symmetry object is initialized with
the code shown in Fig. 7.

By default, the symmetry object searches for an AFLOW
executable in the pATH. However, the location of an AFL.OW
executable can be specified as follows:

Symmetry(aflow_executable = ‘your_executable’).

The symmetry object has three built-in methods, which
correspond to the command-line calls mentioned previously:
get.symmetry(input_file, tol, magmoms)
get_edata(input_file, tol, magmoms)
get_sgdata(input.file, tol, magmoms)
Each method requires a Python file handler (input_file),
while the tolerance (tol) and magnetic moments of each site
(magmoms) are optional arguments.

4.4. AFLOW-SYM support

Functionality requests and bug reports should be posted on
the AFLOW forum http://aflow.org/forum/ under the board

‘Symmetry analysis’.
HKXGS.
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5. Conclusion

In this article, we present AFLOW-SYM, a symmetry platform
catered to, but not limited to, high-throughput frameworks.

We address problems stemming from numerical tolerance in
symmetry analyses by using a mapping procedure uniquely
designed to handle skewed cells and an advanced adaptive
tolerance scheme. AFLOW-SYM also includes consistency
checks of calculated isometries with respect to symmetry
principles. These solutions are validated against the experi-
mental data for structures reported by the ICSD. Comparison
with other symmetry-analysis suites, Spglib, FINDSYM and
PLATON, shows that AFLOW-SYM is the most consistent
with the ICSD.

For general use of AFLOW-8YM, the routines include both
a standard text output and a JSON output for easy integration
into other computational workflows. Lastly, a comprehensive
list of the symmetry descriptions is presented (see Appendix
D?2), illustrating the vast amount of symmetry information
available to users of AFLOW-SYM.

APPENDIX A
Crystallographic symmetry

A1. Mathematical group

A group is an abstract mathematical structure comprised of
a set of elements (g) and an operation that combines two
elements to form a third (Tinkham, 1964). There are four
axioms that a group satisfies:

(1) Closure: the combination of two elements with the
operator yields an element that exists in the set; it does not
create a new element outside the set.

(2) Associativity: the order of combining elements with the
operator is inconsequential given the sequence of operands is
unaltered.

(3) Identity: there exists a neutral element (/) that when
combined with another element leaves that element
unchanged (gl = g).

(4) Inverse: for each element g in the set, there exists a
corresponding inverse element g~ such that gg=! = L.

An abelian group includes the additional axiom of
commutativity. These rules are the foundation of group theory
and underline the construction of the different symmetry
groups.

A2. Point group

A point group is a set of symmetry transformations about a
fixed point {U;, U,,...,U,} that leave a system invariant.®
The elements of the group are classified as (i) n-fold rotations,
where n describes the rotation order (i.e. the number of
symmetric points it generates), (ii) inversions and (iii) roto-
inversions, which are compound operations comprised of a

* Here, the rotation matrix U is used to represent the different symmetry
groups; however, rotation elements can also be described in axis-angle,
matrix-generator and quaternion form.

rotation and inversion. Three-dimensional crystals are
confined to one of 32 point groups owing to the crystal-
lographic restriction theorem, which limits the rotation order
in a periodic system to two-, three-, four- and sixfold (Hahn,
2002). The 32 crystallographic point groups are categorized
into one of seven crystal systems: cubic, hexagonal, trigonal,
tetragonal, orthorhombic, monoclinic and triclinic. The clas-
sifications are based on the lattice parameters (g, b, ¢, @, B, ¥)
of the crystal.

Cubicca=b=c,a=8=y=90°

Hexagonal/trigonal: a = b # ¢, « = = 90°, y = 120°.

Tetragonal: a = b # ¢, ¢ = =y = 90°.

Orthorhombic: a # b #c,a = g =y = 90°.

Monoclinic: a # b # ¢, = y = 90°, B # 90°.

Triclinic: @ # b # ¢, o # B # v # 90°.

In crystallography, two types of point groups are of parti-
cular importance: the lattice and crystal (vector) point group.
Each operates in a different space: the lattice point group
characterizes the symmetry of the lattice points (an affine
space), while the crystal point group additionally considers the
atomic basis and acts on the underlying vector space of the
crystal face normals. Fundamentally, the vector space captures
the symmetry of the macroscopic crystal (Hahn, 2002). The
crystal point-group operations are defined as the linear
mappings of the vector space, i.e. the unique set of fixed-point
transformations of the factor group* (Hahn, 2002; Nespolo &
Souvignier, 2009). Owing to symmetry breaking from the
atomic basis, the cardinality of the crystal point group is at
most as large as that of the lattice. Furthermore, the dual
(reciprocal) counterparts of the lattice and crystal point group
play an important role in electronic structure theory: resolving
the symmetries of the Brillouin and irreducible Brillouin
zones, respectively. In AFLOW-SYM, the output for the
lattice, reciprocal lattice, crystal and dual of the crystal point-
group operations are labeled pgroup, pgroupk, pgroup-xtal
and pgroupk_xtal, respectively.

A3. Space group

In periodic systems, translational symmetry gives rise to
another mathematical group: the space group. Its elements are
comprised of those found in the point group, along with glide
(mirror and translation) and screw (rotation and translation)
operations. The translational degree of freedom extends the
number of unique sets of symmetry operations to 230. The
translations of a crystal are divided into lattice translations (T)
and internal translations (t):

(U, U,,..., 0, [T +t}. 17)

Subsequently, a space group describes the full symmetry of a
periodic system. The space-group operations are labeled
sgroup in AFLOW-SYM.

# Without the relevant internal translations (complete coset representatives),
the crystal point-group operations do not generally apply in the affine point
space (lattice points and atoms), as is the case for non-symmorphic space
groups. Conversely, the set of operations that do apply in the point space

define the site symmetries. X\A G C\
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Ad. Factor group

From the space group, the elements of the factor group are
defined as the cosets of the subgroup of lattice translations

(T):
o)), {u, e}y, (Ut L 1), . .., (18)

where U; are the point-group operations, {; are the associated
internal translations and I is the identity. The unit-cell
symmetry is exposed via the coset representatives:

oy, {uit}. (Ut} ... (19)

The coset representatives themselves do not necessarily form
a mathematical group, since they violate the closure condition.
Repeated application of an internal translation will eventually
traverse beyond the unit cell. The unit-cell symmetry elements
(coset representatives) are labeled fgroup in AFLOW-SYM.

In general, there exists a homomorphism between the factor
group and the crystal point group, ie. the factor group
cardinality is an integer multiple of the crystal point-group
cardinality. The multiplicative factor (m) is dictated by the
number of internal translations in the system. A crystal in a
primitive representation exhibits an isomorphic correspon-
dence (m = 1), while non-primitive representations possess the
general homomorphic relationship (m > 1).

AS5. Site point group

The site point group — or site symmetry — describes the
point-group symmetry centered on a single site in the crystal,
revealing the local symmetry environment. The analysis is
performed on each atomic site in the crystal, with symmetry-
equivalent atoms (Wyckoff positions) exhibiting the same
point-group symmetries. The origin of the fixed-point opera-
tions differentiates the site symmetry from the lattice/crystal
point group, which are centered on the unit-cell origin. In the
finite-difference method for calculating phonons, the unique
distortions for a given atomic site are resolved with its site
symmetry (Jahnitek et al, 2011; Plata et al, 2017). In
AFLOW-SYM, the site-symmetry elements are designated by
agroup (‘atomic site group’).

A6. Crystal spin symmetry

Introducing the spin degree of freedom can break crystal
symmetry. AFLOW-SYM includes functionality for a crystal
spin (lattice, atoms and spin) description, including the rele-
vant point-group, factor-group, space-group and site-
symmetry operations. For magnetic systems, these are the
symmetry descriptions employed by ab initio packages, such as
VASP (Kresse & Hafner, 1993, 1994; Kresse & Furthmiiller,
1996a,b). Note that the crystal spin symmetry differs from the
magnetic symmetry, which accounts for time-reversal
symmetry (spin flips). The magnetic symmetry will be incor-
porated into AFLOW-SYM in a later version.

APPENDIX B
Mathematical representation of symmetry

Symmetry elements are characterized into three types of
transformation: translation, fixed-point and fixed-point-free (a
combination of the two, ie. screw and glide operations)
(Hahn, 2002). Translations are generally indicated by 3 x 1
vectors:

t=1{14|. (20)

Fixed-point symmetries O(3) describing rotations, inversions
and roto-inversions are represented by rotation matrices. The
rotation symmetries SO(3), i.e. a subgroup of the orthogonal
group O(3), can be represented in three additional forms:
axis—angle, matrix-generator and quaternions. AFLOW-SYM
provides the symmetry operations for rotations in each of
these four forms, which are discrete subgroups of the contin-
uous SO(3) group.

B1. Rotation matrix

A rotation matrix describes a transformation between two
reference frames. In three dimensions, the symmetry operators
are 3 x 3 square matrices with the following form:

Uy Uy U
U= | uy uy uyl. (21)

Uz Uzp Uspy

All transformations are unitary (norm-preserving) and
therefore have det(U)=41. The matrix representation
affords fast computation through use of optimized linear
algebra computational packages.

B2. Axis—angle

Rotation operations are also characterized by their axis and
angle of rotation. The axis, ¥ = (r|,r,,r3), indicates the
direction of the rotation operator, pointing perpendicular to
the fixed-point motion. The angle, 0, specifies the magnitude of
the rotational motion (following the right-hand rule). The
angle and axis components are related to the matrix elements
of U by

6 = cos™! (Tr(U) = 1),

2
2 2 2172
ra = [(tay — ua3)” + (g3 — wzy)” + (ug — up)’] ?,
Uy — U Tp— Uy — UL
oot Tts s T U = 21 : 12 22)
Fa Ta Ty

where Tr(U) is the trace of U. The axis-angle representation is
directly applied to a point p via Rodrigues’ rotation formula

Pro: = PCOSO + (F x p)sin® + £(F - p)(1 — cos 6), (23)

where p,,, is the rotated point. This description highlights the
operation order n via n = 360°/0 and identifies the conven-
tional cell lattice vectors, since they are parallel to certain

symmetry axes. XX7 6
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B3. Matrix generator

The Lie group SO(3) grants the use of the corresponding
Lie algebra so(3), which are comprised of the infinitesimal
matrix generators G. The generator is a skew-symmetric
matrix that describes the rotation about a symmetry axis, with
the following form:

0 —-r n
G=1| r 0 -, (24)
—r, n 0

where ry, r,, 7; are the components of the symmetry unit axis r.
The identity and inverse elements have no axis; therefore, the
generator is not defined and is returned as a zero matrix.
While the rotation matrix transforms one reference frame to
another, the generator operates about a single axis. The matrix
exponential of the generator with the angle maps the opera-
tions into the rotation matrix form [U = exp(#G)]. For
convenience, AFLOW-SYM returns the generator multiplied
with the angle A =0G. AFLOW-SYM also provides the
expansion coefficients of the generator matrix onto the
following so(3) basis:

G =xL, +yL, + 7L, (25)
where
0 0 O 0 0 1
L,=10 0 -1]1, Ly = 0O 0 0
01 0 -1 0 0
0 -1 0
L,.=]1 (26)
0

The expansion coefficients x, y and z of this basis set are the
unit axis components r;, r, and r;, respectively.

B4. Quaternion

A quaternion is a mathematical representation of three-
dimensional space with both real and imaginary components.
Though developed in 1843, the quaternion has only recently
gained relevance through the field of computer graphics and
modeling. As opposed to using a nine-element 3 x 3 matrix to
represent a rotation in space, quaternions have a concise
format consisting of four components. The reduced element
count increases computational efficiency and thus is particu-
larly suitable for high-throughput frameworks.

Given an axis and angle, the corresponding quaternion

representation, q = (qq, 41, 42, 43), 18

g = cos(6/2),

q; = r,sin(6/2),

4, = 1, 8in(0/2),

q; = r35in(6/2), @7
which are equivalent to the Euler parameters. Alternate forms

of the quaternion are 2 x 2 and 4 x 4 matrices. The complex 2
X 2 unitary matrix of a quaternion is

q + CIII) ; (28)

o — qsi

qo + q5i
C= ,
(_Qz + gy

which is an element of the SU(2) Lie group. The C matrix can
be expanded onto a basis formed by the Pauli matrices:

0 1 0 4 1 0
"1:(1 0)"’2:(i o)"’Sz(o —1)’ (29)

where multiplying by i (= +/—1) yields the following decom-
position:

C = g0l + gyioy + gyi0; + qsi0;. (30)
The corresponding Lie algebra, su(2), is (Gilmore, 2008)
i 3 ry =yl
== ; . 31
g 2(?1-1—1'21 -7 ) (31)

AFLOW-SYM lists the su(2) generator coefficients expanded
on the Pauli matrices

g = x0, + yo, + 203, (32)

where the expansion coefficients x, y and z are (i/2)r,, (i/2)r,
and (i/2)r;, respectively. Similar to the SO(3) rotations, the
matrix exponential of the su(2) generator g with the angle
maps the operations into the complex 2 x 2 SU(2) matrix
[C =exp(fg)]. The 4 x 4 matrix representation of the
quaternion is

Q L —q1 9o —q3 75} (33)

—q3 —d2 4 qo

which includes all four components of the quaternion vector in
a malfrix, allowing transformations to be performed through
matrix multiplication rather than quaternion algebra. This
method is useful for performing operations with other trans-
formations in matrix or vector form, whereas the quaternion
vector notation has its own algebra similar to the operations
between complex numbers with an additional scalar compo-

nent (gg).

B5. Basis transformations of operators

The representations of the symmetry operations are basis
dependent and are customarily given with respect to Cartesian
or fractional coordinates systems. It is straightforward to
transform symmetry operations between these vector spaces
via a basis change. In matrix notation, the fixed-point opera-
tion in Cartesian (U,) and fractional (U;) coordinates are
related via the following similarity transformations:

U;=L"'UL,
U, =LUL™". (34)

Here, L is the column-space form of the lattice vectors:

a b ¢
L=@ b ¢o)=|a b, ¢ |, (35)
as by ¢y

SO
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where a;, b; and ¢; are the corresponding components of the
lattice vectors. A translation vector f. is transformed
between Cartesian and fractional coordinates by t; = L™'t,
and t, = Lt;.

B6. Example representations

An example of a threefold rotation in Cartesian coordinates
is shown below in its rotation matrix, axis—angle, matrix-
generator, and quaternion vector and matrix representations.

0 -1 0
U u=|0 0 ~1
1 0 0
§ = (0.57735, —0.57735, 0.57735)
6 = 120°
0.0 —1.2092 —1.2092
A=|1202 00 -1.2092
12092 12092 0.0
q=(0.5,0.5, -0.5, 0.5)
05405 —0.5+0.5i
:(0.5+0.55 0.5-0.5;‘)
05 05 —05 05
05 05 —05 —05
Q=105 05 05 05
05 05 05 05
APPENDIX C

Extreme cases of minimal-distance discrepancy
between Cartesian and fractional spaces

The bring-in-cell procedure applied to a crystal with lattice
parametersa=b=c=5 A, o=y =90° and B = 60° identifies
the minimum distance between the fractional coordinates
(0,0,1/2) and (1/2,0,0) to be |[d, || = 4.3301 A, compared
with the true minimum of [|[d™"]| = 2.5 A. A more extreme
mismatch occurs if 8 = 5°, yielding a minimum of IIE:m][ =
4.9952 A with the bring-in-cell method, differing significantly
from the true minimum of ||[d™"|| = 0.2181 A. Applying the
heuristic threshold to the aforementioned skewed examples
give bounds of &, = 1.2130 A (with @™™® = 2.4259 A) and
£, = 0.0017 A (with d™™i) = 04362 A) for = 60° and 8 =
5°, respectively. Both thresholds are sufficiently below the true
minimum distances — even in the worst cases — validating our
choice of the heuristic threshold.

APPENDIX D
AFLOW-SYM details

D1. Python module

The module to run the AFLOW-SYM commands refer-
enced in §4.3 is provided in Fig. 8.

D2. Output list

This section details the output fields for the symmetry-
group operations, extended crystallographic data (edata) and
space-group data (sgdata) routines. The lists describe the
keywords as they appear in the JSON format. Similar
keywords are used for the standard text output.

Symmetry operations output

pgroup

— Description: lattice point-group symmetry operations.
—-Type:array of symmetry operator objects
pgroupk

— Description: reciprocal-lattice point-group symmetry
operations.

— Type: array of symmetry operator objects
fgroup

— Description: coset representative of factor-group
symmetry operations.

— Type: array of symmetry operator objects
pgroup_xtal

— Description: crystal point-group symmetry
operations.

—vape:array of symmetry operator objects
pgroupk xtal

— Description: dual of the crystal point-group symmetry
operations.

— Type: array of symmetry operator objects
sgroup

— Description: space-group symmefry operations out to a
given radius.

— Type: array of symmetry operator objects
iatoms

— Description: groupings of symmetry-equivalent/unique
atoms.

— Type: iatom object

agroup

— Description: site- (atom-) symmetry operations (point
group).

— Type:array of symmetry operator objects

Each symmetry group contains an array of symmetry
objects, including the operation representations listed in Table
4. The symmetryoperator object contains the following:

Hermann_Mauguin

— Description: Hermann—-Mauguin symbol of the symmetry
operation.

— Type: string

Schoenflies

— Description: Schoénflies symbol of the symmetry operation.
— Type: string

Uc

— Description: transformation matrix with respect to
Cartesian coordinates.

— Type: 3 x 3 array MM
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import json
import subprocess
import os

class Symmetry:

def __init_ _(self, aflow_executable='aflow’'):

self.aflow_executable = aflow.executable

def aflow.command(self, cmd):
try:

return subprocess.check_output(
self.aflow_executable + cmd,

shell=True
)

except subprocess.CalledProcessError:
print "Error aflow executable not found
> at: " + self.aflow_executable

def get_symmetry(self, input_file, tol=lNone,

— magmoms=Hone):
fpath = os.path.realpath(input_file.name)
command = ' --aflowSYM’
output = "'
if tol:
command += '=' + str(tol)

if magmoms:

command += --Mmagmom=

output = self.aflow_command (

command + ' --print=json --screen.only’

— + ' < ' + fpath
)
res_json = json.loads (output)
return res.json
Figure 8

+ magmoms

def get_edata(self, input_file, tol=lione,
“—+ magmoms=Hone):
fpath = os.path.realpath(input_file.name)
command = ' --edata’

output =

if tol:
command += ‘="' 4+ =tr(tol)
if magmoms:
command += ' --magmom=" + magmoms

output = self.aflow.command(

--print=json’ + < +

’

command +
— fpath
)
res_json = json.loads(output)
return res_json

def get._sgdata(self, input_file, tol=None,
“— magmoms=HNone):
fpath = os.path.realpath(input_file.name)

command = ' --sgdata’
output = "’
if tol:
command += '=' + (tol)
if magmoms:
command += ' --magmom=' + magmoms

output = self.aflow_command(

command + ' --print=json’ + ' < ' +

— fpath
)
res_json = json.loads (output)
return res_json

The AFLOW-SYM Python module. It includes three symmetry methods (get_symmetry, get_edata and get.sgdata). Each method calls the local
AFLOW executable to perform the corresponding symmetry analysis and returns the output to a Python dictionary. A copy of this module is available

for download in the supporting information.

Uf

— Description: transformation matrix with respect to

fractional coordinates.
— Type: 3 x 3 array

angle

— Description: angle corresponding to symmetry
operation.

— Type: float

axis
— Description: axis of symmetry operation.
— Type: 3 x 1 array

generator

— Description: matrix generator of symmetry operation.

— Type: 3 X 3 array

generator_coefficients

— Description: matrix-generator expansion coefficients onto
L,, L, and L, basis.

— Type: 3 x 1 array

group

— Description: specifies the group type (pgroup, pgroupk,
fgroup, pgroup_xtal, pgroupk_xtal, sgroup and
agroup).

- Type: string SO
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inversion

— Description: indicates if inversion exists.

— Type: bool

quaternionmatrix

— Description: quaternion matrix.

— Type: 4 x 4 array

SU2matrix

— Description: complex quaternion matrix; element of
SU(2).

— Type: 2 x 2 array

su2_.coefficients

— Description: su(2) generator coefficients onto Pauli
matrices (,, 6, and a5).

- Type: 3 x 1 array

quaternion_vector

— Description: quaternion vector.

—Type: 4 x 1 array

type

— Description: point-group operation type (unity, rotation,
inversion or roto-inversion).

— Type: string

ctau

— Description: internal translation component in Cartesian
coordinates (fgroup and sgroup only).

— Type:3 x 1 array

ftau

— Description: internal translation component in fractional
coordinates (fgroup and sgroup only).

—Type: 3 x 1 array

ctrasl

— Description: lattice translation component in Cartesian
coordinates (sgroup only).

— Type:3 x 1 array

ftrasl

— Description: lattice translation component in fractional
coordinates (sgroup only).

— Type:3 x 1 array

The iatom object contains:

inequivalent_atoms

— Description: symmetry-distinct atom indices.

— Type: array

equivalent_atoms

— Description: groupings of symmetry-equivalent atom
indices.

— Type: 2Darray

edata output
lattice parameters
— Description: lattice parameters in units of dngstroms and
degrees (a, b, c, e, B, ¥).
— Type: 6 x 1 array
— Similar to:
FINDSYM: Lattice parameters, a, b, c,
alpha, beta, gamma:
PLATON: first six fields in the line containing CELL

lattice_parameters_Bohr._deg
— Description: lattice parameters in units of Bohr and
degrees (a, b, c, a, 3, ¥).
— Type: 6 x 1 array
volume
— Description: real-space cell volume.
— Type: float
— Similar to:
PLATON: last field in the line containing CELL.
cover_a
— Description: ratio of ¢ and a lattice parameters.
— Type: float
Bravais.lattice_type
— Description: Bravais lattice of the crystal (FCC, BCC,
CUB, HEX, RHL etc.).
— Type: string
Bravais_lattice_variation_type
— Description: lattice variation type of the crystal in the
AFLOW standard (Setyawan & Curtarolo, 2010).
— Type: string
Bravais_lattice_system
— Description: Bravais lattice of the crystal.
— Type: string
— Similar to:
PLATON: CrystalSystem column in Cell Lattice
table.
Pearson_symbol
— Description: Pearson symbol of the crystal.
— Type: string
crystal_family
— Description: crystal family.
— Type: string
crystal_system
— Description: crystal system.
— Type: string
point_group_Hermann_Mauguin
— Description: Hermann—Mauguin symbol corresponding to
the point group of the crystal.
— Type: string
— Similar to:
Spglib: spglibDataset.pointgroup_symbol.
point_group._Schoenflies
— Description: Schénflies symbol for the point group of the
crystal.
— Type: string
point_group_orbifold
— Description: orbifold of the point group.
— Type: string
point_group_type
— Description: point-group type of the crystal.
— Type: string
point_group._order
— Description: number of point-group operations describing
the crystal.
— Type: int

SO

200 David Hicks et al. + AFLOW-SYM

Acta Cryst, (2018). A74, 184-203



research papers

point group_structure

— Description: point-group structure of the crystal.

— Type: string

Laue

— Description: Laue symbol of the crystal.

— Type: string

— Similar to:
PLATON: field after the line containing Laue.

crystal_class

— Description: crystal class.

— Type: string

space_group_number

— Description: space-group number.

— Type: int

— Similar to:
Spglib: spglibDataset.spacegroup.number.
FINDSYM: field after line containing _symmetry_Int_
Tables_number.
PLATON: field after line containing No (number).

space_group-Hermann.Mauguin

— Description: Hermann-Mauguin space-group label.

— Type: string

— Similar to:
Spglib: spglibDataset.International_symbol.
FINDSYM: field after line containing _symmetry.
space_group_name_H-M.
PLATON: field after line containing Space Group H—M.

space_group_Hall

— Description: Hall space-group label.

— Type: string

— Similar to:
Spglib: spglibDataset.hall_symbol.
FINDSYM: field after line containing _space.
group.reference_setting
PLATON: field after line containing
Spacegroup —Hall.

space.-group-Schoenflies
— Description: Schonflies space-group label.
— Type: string
— Similar to:
Spglib: spg_get_schoenflies.
FINDSYM: second field after line containing
Space Group.
PLATON: field after line containing Schoenflies.

setting_ITC
— Description: I'TC setting of conventional cell
(AFLOW-SYM defaults to the first setting that appears in
ITC and the hexagonal setting for rhombohedral systems).
— Type: int
— Similar to:

Spglib: spglibDataset.choice.

origin.ITC

— Description: corresponding origin shift of the crystal to
align with the ITC representation.

—Type: 3 x 1 array

— Similar to:
Spglib: spglibDataset.choice.
FINDSYM: field after line containing Origin at.
PLATON: field after line containing
Origin Shifted to.

general position_ITC

— Description: general Wyckoff position (x, y, z) as

indicated by ITC.

— Type: 2Darray

— Similar to:
FINDSYM: field after line containing
-Space_group.symop_operation xyz.
PLATON: in the Symmetry Operation(s) table.

Wyckoff positions
— Description: indicates the Wyckoff letter, multiplicity, site
symmetry, position (3 x 1 array) and atom name.
— Type: array of objects
— Similar to:
Spglib: get_symmetry.dataset.wyckoffs (letters
only).
FINDSYM: in the loop with _atom prefix.

Bravais_lattice_lattice._type

— Description: Bravais lattice of the lattice.

— Type: string
Bravais_lattice_lattice_variation_type

— Description: lattice variation type of the lattice in the
AFLOW standard (Setyawan & Curtarolo, 2010).

— Type: string

Bravais_lattice.lattice_system

— Description: Bravais lattice system of the lattice.

— Type: string
Bravais_superlattice_lattice_type

— Description: Bravais lattice of the superlattice.

— Type: string
Bravais_superlattice_lattice_variation_type

— Description: lattice variation type of the superlattice in the
AFLOW standard (Setyawan & Curtarolo, 2010).

— Type: string
Bravais_superlattice_lattice_system

— Description: Bravais lattice system of the superlattice.
— Type: string

Pearson_symbol_superlattice

— Description: Pearson symbol of the superlattice.

— Type: string

reciprocal_lattice_vectors

— Description: reciprocal-lattice vectors.

— Type: 3 x 3 array

reciprocal_lattice_parameters
— Description: reciprocal-lattice parameters (a, b, ¢, @, B, ¥).
— Type: 6 x 1 array

reciprocal_volume
— Description: reciprocal-cell volume.
— Type: £loat

YXYETS
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reciprocal_lattice_type

— Description: Bravais lattice of the reciprocal lattice (FCC,
BCC, CUB, HEX, RHL etc.).

— Type: string

reciprocal_lattice_variation_type

— Description: lattice variation type of the reciprocal lattice
in the AFLOW standard (Setyawan & Curtarolo, 2010).

— Type: string

reciprocal_lattice_system

— Description: lattice system of the reciprocal lattice.

— Type: string

standard_-primitive_structure

— Description: AFLOW standard primitive crystal
structure representation.

— Type: structure object

standard_conventional_structure

— Description: AFLOW standard conventional crystal
structure representation.

— Type: structure object

WYCCar
— Description: ITC conventional crystal structure
representation.
— Type: structure object
— Similar to:
Spglib: Spg_standardize cell(to_primitive=0).
FINDSYM: after space Group line.

The structure object lists the following information
regarding the crystal structure:

title

— Description: geometry file title.

— Type: string

scale

— Description: scaling factor of lattice vectors.

— Type: float

lattice

— Description: row-space representation of lattice vectors
(a, b, c).

— Type: 3 x 3 array floats

species

— Description: list of atomic species in crystal.

— Type: array of strings

number_each _type

— Description: number of atoms for each distinct atomic
species.

— Type: array of ints

— Description: indicates the coordinate representation
(‘Cartesian’ or ‘direct’).

— Type: string

coordinates_type

atoms
— Description: atom information.
— Type: array of atom objects

where the atom object contains
name

— Description: atomic species name.
— Type: string

occupancy

— Description: site occupancy.

— Type: float

position

— Description: Cartesian or fractional coordinate.
— Type: 3 x 1 array

sgdata output. The output from this function is a subset of
edata containing the space-group and Wyckoff-position
information.

Funding information

Funding for this research was provided by: U.S. Department of
Defense through the National Defense Science and Engi-
neering Graduate (NDSEG) Fellowship Program (to David
Hicks); National Science Foundation (grant No. DGF1106401
to Corey Oses); Office of Naval Research (grant No. N00014-
17-1-2090 to Stefano Curtarolo); Alexander von Humboldt-
Stiftung (award to Stefano Curtarolo).

References

Agapito, L. A., Curtarolo, S. & Buongiorno Nardelli, M. (2015). Phys.
Rev. X, 5§, 011006.

Aroyo, M. I, Kirov, A, Capillas, C.,, Perez-Mato, J M &
Wondratschek, H. (2006). Acta Cryst. A62, 115-128.

Aroyo, M. L, Perez-Mato, J. M., Capillas, C,, Kroumova, E.,
Ivantchev, S., Madariaga, G., Kirov, A. & Wondratschek, H.
(2006). Z. Kristallogr. 221, 15-27

Baur, W. H. & Tillmanns, E. (1986). Acta Cryst. B42, 95-111.

Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. (2002). Acta
Cryst. B58, 364-369

Bergerhoff, G., Hundt, R, Sievers, R. & Brown, I. D. (1983). J. Chem.
Inf. Model. 23, 66-69.

Blum, V., Gehrke, R., Hanke, F., Havu, P, Havu, V., Ren, X., Reuter,
K. & Scheffler, M. (2009). Comput. Phys. Commun. 180, 2175-2196.

Buerger, M. I. (1947). J. Chem. Phys. 15, 1-16.

Carrete, J., Mingo, N., Wang, S. & Curtarolo, S. (2014). Adv. Funct.
Mater. 24, 7427-7432.

Curtarolo, S., Hart, G. L. W., Buongiorno Nardelli, M., Mingo, N,
Sanvito, S. & Levy, O. (2013). Nat. Mater. 12, 191-201.

Curtarolo, S., Setyawan, W., Hart, G. L. W,, Jahndtek, M., Chepulskii,
R. V, Taylor, R. H., Wang, S., Xue, I, Yang, K., Levy, 0., Mehl,
M. I, Stokes, H. T., Demchenko, D. O. & Morgan, D. (2012).
Comput. Mater. Sci. 58, 218-226.

Fritzer, H. P. (2001). Spectrochim. Acta A Mol. Biomol. Spectrosc. 57,
1919-1930.

Giacovazzo, C., Monaco, H. L., Artioli, G., Viterbo, D., Milanesio, M.,
Ferraris, G., Gilli, G., Gilli, P, Zanotti, G. & Catti, M. (2011).
Fundamentals of Crystallography, 3rd ed. Oxford University Press.

Giannozzi, P, Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni,
C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, L, Dal
Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R.,
Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-
Samos, L., Marzari, N., Mauri, F,, Mazzarello, R., Paolini, S.,
Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero,
G., Seitsonen, A. P, Smogunov, A., Umari, P. & Wentzcovitch, R.
M. (2009). J. Phys. Condens. Matter, 21, 395502. %\} ¢

« (&

202 David Hicks et al. + AFLOW-SYM

Acta Cryst. (2018). A74, 184-203



research papers

Gilmore, R. (2008). Lie Groups, Physics, and Geometry. Cambridge
University Press.

Gonze, X., Beuken, J-M., Caracas, R., Detraux, FE, Fuchs, M.,
Rignanese, G. M., Sindic, L., Verstraete, M., Zerah, G., Jollet, E,
Torrent, M., Roy, A., Mikami, M., Ghosez, P, Raty, J.-Y. & Allan,
D. C. (2002). Comput. Mater. Sci. 25, 478-492.

Groom, C. R., Bruno, L. I, Lightfoot, M. P. & Ward, S. C. (2016). Acta
Cryst. B72, 171-179.

Hahn, Th. (2002). Editor. International Tables for Crystallography,
Vol. A, Space-group symmetry. Dordrecht: Kluwer Academic
publishers.

Hart, G. L. W,, Curtarolo, S., Massalski, T. B. & Levy, O. (2013). Phys.
Rev. X, 3, 041035.

Hart, G. L. W. & Forcade, R. W. (2008). Phys. Rev. B, 77, 224115.

Herbstein, F. H. & Marsh, R. E. (1982). Acta Cryst. B38, 1051-1055.

Hloucha, M. & Deiters, U. K. (1998). Mol. Simul. 20, 239-244,

Jahndtek, M., Levy, O, Hart, G. L. W,, Nelson, L. I, Chepulskii, R. V.,
Xue, J. & Curtarolo, S. (2011). Phys. Rev. B, 84, 214110.

Jain, A., Hautier, G., Moore, C. I, Ping Ong, S., Fischer, C. C,
Mueller, T., Persson, K. A. & Ceder, G. (2011). Comput. Mater. Sci.
50, 2295-2310.

Karney, C. F. F. (2007). J. Mol. Graphics Modell. 25, 595-604.

Kresse, G. & Furthmiiller, J. (1996a). Comput. Mater. Sci. 6, 15-50.

Kresse, G. & Furthmiiller, J. (1996b). Phys. Rev. B, 54, 11169-11186.

Kresse, G. & Hafner, J. (1993). Phys. Rev. B, 47, 558-561.

Kresse, G. & Hafner, I. (1994). Phys. Rev. B, 49, 14251-14269.

Le Page, Y. (1987). J. Appl. Cryst. 20, 264-269.

Levy, O., Chepulskii, R. V., Hart, G. L. W. & Curtarolo, S. (2010). J.
Am. Chem. Soc. 132, 833-837.

Levy, O., Hart, G. L. W. & Curtarolo, S. (2010a). Phys. Rev. B, 81,
174106.

Levy, O., Hart, G. L. W. & Curtarolo, S. (20106). J. Am. Chem. Soc.
132, 4830-4833.

Levy, O., Jahndtek, M., Chepulskii, R. V., Hart, G. L. W. & Curtarolo,
S. (2011). J. Am. Chem. Soc. 133, 158-163.

Marsh, R. E. & Herbstein, F. H. (1983). Acta Cryst. B39, 280-287.

Matano, K., Kriener, M., Segawa, K., Ando, Y. & Zheng, G. (2016).
Nat. Phys. 12, 852-854.

Mehl, M. J,, Hicks, D., Toher, C., Levy, O., Hanson, R. M., Hart,
G. L. W. & Curtarolo, S. (2017). Comput. Mater. Sci. 136, S1-5828.

Nath, P, Plata, J. I, Usanmaz, D., Al Rahal Al Orabi, R., Fornari, M.,
Buongiorno Nardelli, M., Toher, C. & Curtarolo, S. (2016). Comput.
Mater. Sci. 125, 82-91.

Nath, P, Plata, J. I, Usanmaz, D., Toher, C., Fornari, M., Buongiorno
Nardelli, M. & Curtarolo, S. (2017). Scr. Mater. 129, 88-93.

Nespolo, M. & Souvignier, B. (2009). Z. Kristallogr. 224, 127-136.

Perim, E,, Lee, D., Liu, Y., Toher, C., Gong, P, Li, Y., Simmons, W. N,,
Levy, O., Vlassak, I. I, Schroers, J. & Curtarolo, S. (2016). Nat.
Commun. 7, 12315.

Plata, J. I., Nath, P, Usanmaz, D., Carrete, I, Toher, C,, de Jong, M.,
Asta, M. D., Fornari, M., Buongiorno Nardelli, M. & Curtarolo, S.
(2017). Npj Comput. Mater. 3(45), 45.

Rose, E, Toher, C., Gossett, E., Oses, C., Buongiorno Nardelli, M.,
Fornari, M. & Curtarolo, S. (2017). Comput. Mater. Sci. 137, 362~
370.

Saal, J. E., Kirklin, S., Aykol, M., Meredig, B. & Wolverton, C. (2013).
JOM, 65, 1501-1509.

Sands, D. E. (1982). Vectors and Tensors in Crystallography. Reading,
Massachusetts: Addison-Wesley.

Scheffler, M., Draxl, C. & Computer Center of the Max-Planck
Society & Garching (2014). The NoMaD repository. http://nomad-
repository.eu.

Setyawan, W. & Curtarolo, S. (2010). Comput. Mater. Sci. 49, 299
312.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Stokes, H. T. (1995). Ferroelectrics, 164, 183-188.

Stokes, H. T., Campbell, B. J. & Hatch, D. M. (2017). FINDSYM.
http://stokes.byu.edu/iso/findsym.php.

Stokes, H. T. & Hatch, D. M. (2005). J. Appl. Cryst. 38, 237-238.

Supka, A. R., Lyons, T. E., Liyanage, L. 8. I, D’Amico, P.,’Al Rahal
Al Orabi, R., Mahatara, S., Gopal, P, Toher, C., Ceresoli, D,
Calzolari, A., Curtarolo, S., Buongiorno Nardelli, M. & Fornari, M.
(2017). Comput. Mater. Sci. 136, 76-84.

Taylor, R. H., Rose, F, Toher, C., Levy, O., Yang, K., Buongiorno
Nardelli, M. & Curtarolo, S. (2014). Comput. Mater. Sci. 93, 178~
192.

Tinkham, M. (1964). Group Theory and Quantum Mechanics. New
York, New York: MecGraw-Hill, Inc.

Togo, A. (2017a). Spglib — spglib 1.10.1 documentation. https://
atztogo.github.io/spglib/.

Togo, A. (2017b). Crystal symmetry — Phonopy v.1.12.6. https://
atztogo.github.io/phonopy/symmetry.html.

Toher, C., Oses, C., Plata, J. J., Hicks, D., Rose, E, Levy, O., de Jong,
M., Asta, M. D., Fornari, M., Buongiorno Nardelli, M. & Curtarolo,
S. (2017). Phys. Rev. Mater. 1, 015401,

Toher, C., Plata, J. I, Levy, O, de Jong, M., Asta, M. D., Buongiorno
Nardelli, M. & Curtarolo, S. (2014). Phys. Rev. B, 90, 174107.

Wondratschek, H. & Miiller, U. (2004). Editors. International Tables
for Crystallography, Vol. Al, Symmetry relations between space
groups. Heidelberg: Springer.

Yang, K., Oses, C. & Curtarolo, S. (2016). Chem. Mater. 28, 6484
6492.

NN

Acta Cryst. (2018). A74, 184-203

David Hicks et al. - AFLOW-SYM 203






